Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

О.В. Жиров

Квантовая механика

Сборник задач и примеры их решения

Учебно-методическое пособие

НОВОСИБИРСК 2023

Рецензенты:

канд. физ.-мат. наук, доцент кафедры ЭФУиУ НГТУ А. Ю. Барняков канд. физ.-мат. наук, ст. эксперт-физик ИЯФ СО РАН, А. А. Померанский

Жиров О.В.

Ж Квантовая механика. Сборник задач и примеры их решения : учебнометодическое пособие / О.В. Жиров. – Новосибирск : Изд-во НГТУ, 2023. – ?c. ISBN

Пособие состоит из двух разделов: в первом изложены краткие теоретические сведения и приведен базовый набор задач квантовой механики с соответствующими вводными методическими указаниями по каждой теме, второй раздел содержит подробные решения и ответы для предложенных задач.

Пособие предназначено для студентов 4-го курса кафедры электрофизических установок и ускорителей (ЭФУиУ) физико-технического факультета НГТУ для проведения практических занятий, а также для самостоятельной работы по квантовой механике в рамках курса «Теоретическая физика».

Предлагаемые в пособии задачи уже многие годы используются на практических занятиях базового курса квантовой механики, преподаваемого на кафедре ЭФУиУ ФТФ НГТУ. Некоторые из них вошли также в традиционный набор задач по квантовой механике для студентов 3-го курса ФФ НГУ. Происхождение большей части задач уже давно носит фольклорный характер, и авторство их установить вряд ли возможно, однако некоторые из вошедших в этот сборник задач являются оригинальными.

Вошедшие в предлагаемый сборник задачи охватывают 11 тем, составляющих ядро базового курса квантовой механики, предназначенного для инженеров и физиков-экспериментаторов. Пособие состоит из двух разделов: первый содержит условия задач, сгруппированных по темам, второй — соответствующие решения и ответы.

Для облегчения самостоятельной работы к каждой теме прилагается вводный теоретический материал и необходимые методические указания. Разумеется, это не отменяет необходимости чтения учебников, и детальные ссылки на них с указанием соответствующих страниц и параграфов призваны облегчить нахождение обсуждаемого материала для более глубокой проработки каждой из тем. Кроме того, данное пособие является дополнением к читаемому лекционному материалу, опубликованному отдельно.

Оглавление

Введение	3	
Темы:	Задачи	Ответы
1. Квантовая природа микромира. Масштабы квантовых явлений и про-	5	42
стейшие оценки.		
2. Волны де Бройля. Принцип суперпозиции. Волновые пакеты. Соотно-	6	44
шение неопределенностей Гейзенберга		
3. Операторы, коммутаторы операторов. Общая теория представлений и	9	47
матричный подход Гейзенберга.		
4. Квантовая динамика, уравнение Шредингера.	12	49
5. Одномерное движение в потенциальном поле, стационарный случай.	14	50
5.1 Общие свойства одномерного движения	14	50
5.2 Движение квантовых частиц в периодическом потенциале	17	55
5.3 Гармонический осциллятор	19	56
6. Квазиклассическая динамика. Приближение ВКБ, квантование Бора-		
Зоммерфельда, квантовое туннелирование.	22	58
7. Движение в центральном поле	24	60
7.1 Общие свойства движения в центральном поле	24	60
7.2 Атом водорода	26	61
8. Движение частицы в магнитном поле. Спин	27	62
8.1 Электрон в однородном магнитном поле	27	62
8.2 Спин электрона	28	64
8.3 Уравнение Паули, спин в магнитном поле	30	65
9. Сложение моментов, волновые функции	31	66
10. Тождественные частицы	33	68
11. Теория возмущений	34	68
11.1 Стационарное возмущение	34	68
11.2 Возмущение, зависящее от времени	36	73
11.3 Переходы под воздействием периодического возмущения	38	74
11.4 Рассеяние частиц на потенциале: приближение Борна	40	76
Список литературы	79	

1. Краткие теоретические сведения и задачи

1. Квантовая природа микромира. Масштабы квантовых явлений и простейшие оценки.

Масштаб квантовых явлений определяется фундаментальной физической константой, известной как *постоянная* Планка: $\hbar = h/2\pi = 1,05 \cdot 10^{-27}$ эрг·с. В частности, наличию именно этого параметра обязаны такие свойства микромира, как *устойчивость* атомов, *дискретность* их энергетических спектров, существование *квантов* электромагнитного поля [1, §1; 2, §1; 3, гл.1; 4, §1–3].

В ряде случаев сочетание этой постоянной с другими размерными параметрами физической системы позволяет получить оценку для масштаба величин квантовых характеристик системы с помощью так называемого метода оценки по размерности [5, с. 29–30; 6, с. 4–8]. Этот метод представляет наибольший интерес в тех случаях, когда из доступных размерных параметров решаемой задачи невозможно построить безразмерную комбинацию – в таких случаях комбинация требуемой размерности строится единственным способом и дает ответ с точностью до численного множителя, на практике не сильно отличающегося от единицы.

Например, энергетический спектр квантовой частицы, колеблющейся в некотором потенциальном поле с периодом T, дискретен. Как оценить расстояние ΔE между соседними энергетическими уровнями? Из имеющихся в наличии двух параметров \hbar и T единственная комбинация размерности энергии имеет вид $\Delta E^{(T)} \sim \hbar/T$. Однако, если при построении комбинации нужной размерности вместо периода T воспользоваться так называемой угловой частотой $\omega = 2\pi/T$, то получается несколько более «правильный» результат $\Delta E^{(\omega)} \sim \hbar \omega = 2\pi \Delta E^{(T)}$. Отсюда явным образом проявляется и ограничение метода — неустранимый произвол в виде численного множителя, который на практике редко превышает один

порядок, поэтому подобные оценки обычно называются *оценками по порядку величины*. Стоит упомянуть, что для фотона с частотой ω и волновым вектором \vec{k} такая оценка совпадает с точным результатом для его энергии $E=\hbar\omega$ и импульса $\vec{p}=\hbar\vec{k}$.

Задача 1.1. Используя соображения размерности, получить для атома водорода в основном состоянии оценку размера, энергии состояния и скорости электрона.

Задача 1.2. Для гармонического осциллятора оценить степень дискретности энергетического спектра $\Delta E/E$: (a) в *макроскопическом* случае, когда масса m=1 г, частота $\omega=1$ рад/с, амплитуда колебаний A=1 см; и (б) в *микроскопическом* случае, когда $m=m_e=9\cdot 10^{-28}$ г, $\omega=5\cdot 10^{-16}$ рад/с, $A=a_B=0,5\cdot 10^{-8}$ см.

Задача 1.3. Оценить рабочее напряжение для красного светодиода с длиной волны $\lambda = 750$ нм и синего светодиода с длиной волны $\lambda = 450$ нм.

Задача 1.4. Предположим, что электрон в атоме водорода подчиняется законам классической механики и движется по круговой орбите. Оценить время падения электрона на ядро из-за неизбежных потерь на электромагнитное излучение.

Задача 1.5. Для рассеяния фотона на свободном покоящемся электроне найти связь между частотой и углом рассеянного фотона (эффект Комптона).

Задача 1.6. Предполагая, что электрон вокруг ядра атома водорода движется по круговой орбите, а момент импульса электрона принимает дискретные значения $|\vec{M}| = |(\vec{r} \times \vec{p})| = n\hbar$ (где n — целые числа), найти спектр энергетических уровней атома водорода ($H.\ Eop$, 1913).

2. Волны де Бройля. Принцип суперпозиции. Волновые пакеты. Соотношение неопределенностей Гейзенберга

Согласно теории, предложенной в 1924 году де Бройлем, каждой материальной частице может быть сопоставлена так называемая *волновая функция*, которая для свободно движущейся частицы принимает вид плоской волны, или волны де Бройля:

$$\psi(\vec{r},t) = \operatorname{const} \cdot e^{-\mathrm{i}(\omega t - \vec{k} \, \vec{r})}, \tag{1.2.1}$$

где частота волны связана с энергией частицы как $\omega = E/\hbar$ (в нерелятивистском пределе $E = p^2/2m$), а волновой вектор с импульсом частицы – как $\vec{k} = \hbar \vec{p}$.

Волновую функцию $\psi(\vec{r},t)$ называют также *амилитудой вероятности*. В общем случае она комплексна, в отличие от вещественной <u>положительно</u> определенной *плотности вероятности* обнаружить частицу в состоянии с координатой \vec{r} в момент времени $t: w(\vec{r},t) = |\psi(\vec{r},t)|^2$. Стандартное условие нормировки для полной вероятности дает условие нормировки и для волновой функции:

$$1 = \int d^3r \ w(\vec{r},t) = \int d^3r \ |\psi(\vec{r},t)|^2 \ .$$

В отличие от классической, в квантовой механике *принцип суперпозиции* справедлив для *амплитуд* вероятности: $\psi(\vec{r},t) = \psi_1(\vec{r},t) + \psi_2(\vec{r},t)$, а не для самих вероятностей. Соответствующая такой сумме вероятность

$$w(\vec{r},t) = |\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + \psi_1^* \psi_2 + \psi_1 \psi_2^*$$

не равна сумме вероятностей $w_1(\vec{r},t) + w_2(\vec{r},t) = |\psi_1|^2 + |\psi_2|^2$, и в зависимости от знака слагаемого $\psi_1^*\psi_2 + \psi_1\psi_2^*$ она может быть как усилена, так и подавлена, что известно как явление **интерференции**.

Состояние свободной квантовой частицы, *локализованное* в некоторой области пространства, может быть описано *волновыми пакетами* — суперпозицией плоских волн (волн де Бройля (1.2.1)):

$$\Psi(\vec{r},t) = \int d^3 p \ a(\vec{p}) \ e^{-\frac{i}{\hbar}(E(p)t - \vec{p}\vec{r})} = \int d^3 p \ a(\vec{p}) \ \psi_{\vec{p}}(\vec{r}) \ e^{-\frac{i}{\hbar}E(p)t}, \quad (1.2.2)$$

где, в свою очередь, функция $\psi_{\vec{p}}(\vec{r}) = \exp\left(\frac{\mathrm{i}}{\hbar}\,\vec{p}\,\vec{r}\right)/\left(2\pi\hbar\right)^{3/2}$, описывающая *нелока- лизованное* квантовое состояние частицы с импульсом \vec{p} , нормирована условием

$$\int d^3r \ \psi_{\vec{p}}^*(\vec{r})\psi_{\vec{p}'}(\vec{r}) = \delta(\vec{p} - \vec{p}'). \tag{1.2.3}$$

Коэффициент разложения $a(\vec{p}) = \int d^3r \ \psi_{\vec{p}}^*(\vec{r}) \ \Psi(\vec{r},t=0)$ является **импульсной ам- плитудой вероятности**, определяющей вероятность обнаружить частицу в со-

стоянии с определенным значением импульса \vec{p} : $w(\vec{p}) = |a(\vec{p})|^2$. Так как импульс *свободной* частицы сохраняется, $a(\vec{p})$ и $w(\vec{p})$ не зависят от времени.

Из теории волн известно, что для волновых пакетов имеют место соотношения вида $\Delta \omega \cdot \Delta t \geq 1$ и $\Delta k \cdot \Delta x \geq 1$. Аналогичные ограничения, известные как *со-отношения неопределенностей Гейзенберга*, возникают и для квантовой частицы:

$$\Delta E \cdot \Delta t \ge \hbar, \qquad \Delta x \cdot \Delta p \ge \hbar.$$
 (1.2.4)

Литература: [1, §2–4; 2, с. 18–31; 4, §17–20; 7, §1,2; 8, §1,2; 9, с. 17–41; 10, §1–4].

Задача 2.1. Найти длину волны для частицы с кинетической энергией 1 эВ, если эта частица: (а) фотон; (б) электрон; (в) нейтрон.

Задача 2.2. Плотность жидкого He^4 равна $\rho = 0,14\text{г/cM}^3$. Оценить температуру, при которой длина волны де Бройля для атомов He^4 будет порядка среднего расстояния между ними.

Задача 2.3. Пусть начальная волновая функция для свободной частицы имеет вид

$$\Psi(x,t=0) = \frac{1}{(2\pi a_0^2)^{1/4}} \exp\left(-\frac{(x-x_0)^2}{4a_0^2} + i\lambda x\right).$$
 (1.2.5)

Найти: (а) распределение вероятности по импульсам w(p); (б) волновую функцию в последующие моменты времени $\Psi(x,t)$; (в) зависимость положения центра пакета от времени, (г) зависимость ширины пакета от времени.

Задача 2.4. Исходя из соотношения неопределенностей Гейзенберга для импульсов и координат, оценить энергию основного состояния гармонического осциллятора.

Задача 2.5. Исходя из соотношения неопределенностей Гейзенберга, оценить энергию основного состояния частицы в поле $U(x) = \alpha |x|$.

Задача 2.6. Используя соотношение неопределенностей Гейзенберга, оценить энергию уровня в одномерной прямоугольной яме шириной a и глубиной U_0 , полагая яму «мелкой»: $U_0 \ll \hbar^2 / 2ma^2$.

3. Операторы, коммутаторы операторов. Общая теория представлений и матричный подход Гейзенберга

Основные свойства квантовомеханических операторов $\{\hat{F}\}$, действующих на пространстве волновых функций $\{\Psi\}$:

- линейность: $\hat{F}(c_1\Psi_1 + c_2\Psi_2) = c_1\hat{F}\Psi_1 + c_2\hat{F}\Psi_2$;
- аддитивность: $(\hat{F}_1 + \hat{F}_2)\Psi = \hat{F}_1\Psi + \hat{F}_2\Psi$;
- транзитивность: $\hat{F}_1 \hat{F}_2 \Psi = \hat{F}_1 (\hat{F}_2 \Psi)$.

Функция от оператора определяется с помощью ряда Тейлора:

$$f(\hat{F}) \equiv \sum_{n=0}^{\infty} f^{(n)} \frac{(\hat{F})^n}{n!}, \quad \text{где } f^{(n)} \equiv \left(\left(\frac{d}{dx} \right)^n f(x) \right)_{x=0}.$$
 (1.3.1)

Функция f(x) предполагается аналитической в окрестности точки x = 0.

В общем случае произведение операторов *некоммутативно*: $\hat{F}_1\hat{F}_2 \neq \hat{F}_2\hat{F}_1$.

- Разность $\hat{F}_1\hat{F}_2 \hat{F}_2\hat{F}_1 \equiv [\hat{F}_1, \hat{F}_2]$ называется коммутатором.
- Сумма $\hat{F}_1\hat{F}_2 + \hat{F}_2\hat{F}_1 \equiv \{\hat{F}_1, \hat{F}_2\}$ называется антикоммутатором.

Из определения коммутатора следует: $[\hat{F}_1\hat{F}_2,\hat{F}_3] = \hat{F}_1[\hat{F}_2,\hat{F}_3] + [\hat{F}_1,\hat{F}_3]\hat{F}_2$.

Для операторов координаты \hat{r}_i и импульса \hat{p}_i коммутатор $[\hat{r}_i,\hat{p}_j]=\mathrm{i}\hbar\delta_{ij}$. Их явный вид: $\hat{r}_i=r_i$, $\hat{p}_i=-\mathrm{i}\hbar\frac{\partial}{\partial r_i}$ — в **координатном**, и $\hat{r}_i=\mathrm{i}\hbar\frac{\partial}{\partial p_i}$, $\hat{p}_i=p_i$ в **импульсном** представлении.

Литература: [1, §7; 2, с. 71–73; 4, §30; 7, §3; 8, §3; 10, §7–10].

В формализме *общей теории представлений* [1, §27–30; 2, с. 167–178, 184–190; 14, §5–7; 9, с. 161–203; 10, §14] множество квантовых состояний представляет собой унитарное векторное (*гильбертово*) пространство. Каждое квантовое состояние обозначается вектором $|\Psi\rangle$.

Скалярное произведение двух векторов $|\Psi_a\rangle$ и $|\Psi_b\rangle$ в унитарном пространстве определено как (в общем случае, *комплексное*) число ψ_{ab} = $\langle \Psi_a \, | \, \Psi_b \rangle$,

где *эрмитово сопряженный* вектор $\langle \Psi_a |$ есть результат последовательных операций комплексного сопряжения и транспонирования: $\langle \Psi_a | \equiv (|\Psi_a \rangle)^+ = ((|\Psi_a \rangle)^*)^T$.

Матричный элемент произвольного оператора \hat{F} определяется как

$$F_{ab} = \langle \Psi_a | \hat{F} | \Psi_b \rangle.$$

Соответствующие «*левые*» $\langle \Psi |$ и «*правые*» $| \Psi \rangle$ векторы П. Дирак предложил называть *бра* и *кем* векторами — от английского слова *brackets* (скобки).

Диагональный матричный элемент $F_{aa} = \langle \Psi_a \, | \, \hat{F} \, | \, \Psi_a \rangle \equiv \langle F \rangle_a$ дает *среднее* от оператора \hat{F} по состоянию $| \, \Psi_a \rangle$. Классически измеримые, т. е. **наблюдаемые** величины *вещественны*, и соответствующие им операторы э*рмитовы*: $(\hat{F})^+ = \hat{F}$.

Для перехода к конкретному представлению в гильбертовом пространстве нужно выбрать набор базисных векторов $\{|\alpha\rangle\}$, удовлетворяющих условиям полноты: $\sum_{\alpha} |\alpha\rangle\langle\alpha| = 1$, и ортонормированности: $\langle\alpha|\beta\rangle = \delta_{\alpha\beta}$. Проецируя физический вектор квантового состояния $|\Psi\rangle$ на базис $\{|\alpha\rangle\}$, получим численнозначную волновую функцию $\Psi(\alpha) = \langle\alpha|\Psi\rangle$, которую можно рассматривать и как числовой вектор Ψ_{α} с индексом α (индекс α может принимать как дискретные, так и непрерывные значения).

Оператор \hat{F} , взятый «в обкладках» базисных векторов $\{|\alpha\rangle\}$, является числовой матрицей: $F_{\alpha_1\alpha_2}=\langle\alpha_1\,|\,\hat{F}\,|\,\alpha_2\rangle$, т. е. *численнозначным* представлением оператора \hat{F} в базисе $\{|\alpha\rangle\}$. В частности, выбирая в качестве базиса $\{|\alpha\rangle\}$ собственные векторы оператора *координаты* $\{|x\rangle\}$, $(\hat{x}\,|\,x\rangle=x\,|\,x\rangle)$ либо оператора *импульса* $\{|p\rangle\}$, $(\hat{p}\,|\,p\rangle=p\,|\,p\rangle)$, получим соответственно *координатное* либо *импульсное* представление.

Переход от представления в базисе $\{|\alpha\rangle\}$ к представлению в другом базисе $\{|\beta\rangle\}$ производится с помощью унитарного преобразования $U_{\beta,\alpha} = \langle \beta \, | \, \alpha \rangle$:

$$\langle \beta \, | \, \Psi \rangle = \sum_{\alpha} \langle \beta \, | \, \alpha \rangle \langle \alpha \, | \, \Psi \rangle \, , \label{eq:beta}$$

где $\langle \alpha | \Psi \rangle$ и $\langle \beta | \Psi \rangle$ — волновая функция квантового состояния $| \Psi \rangle$ в базисе $\{ | \alpha \rangle \}$ и базисе $\{ | \beta \rangle \}$ соответственно; здесь также использовано *условие полноты*: $\sum_{\alpha} |\alpha \rangle \langle \alpha | = 1 \, .$

Для произвольной пары habnodaembx физических величин, которым соответствуют эрмитовые операторы \hat{a} и \hat{b} и коммутатор которых отличен от нуля: $[\hat{a},\hat{b}]=i\hat{C}\neq 0$ (где \hat{C} — эрмитов оператор), при усреднении по любому квантовому состоянию $|\Phi\rangle$ возникает неравенство, являющееся обобщением *соотношения неопределенностей Гейзенберга* (см. также [1, с. 54]):

$$\langle (\hat{a} - \langle \hat{a} \rangle)^2 \rangle \langle (\hat{b} - \langle \hat{b} \rangle)^2 \rangle \ge \frac{1}{4} \langle \hat{C} \rangle^2$$
 (1.3.2)

Задача 3.1. Вычислить коммутаторы:

- (a) [\hat{x} , \hat{K}], где $\hat{K} = \hat{p}^2 / 2m$ оператор кинетической энергии;
- (б) $[\hat{p}, \hat{U}(\hat{x})]$, где $\hat{U}(\hat{x})$ оператор потенциальной энергии. *Указание*: использовать для оператора $\hat{U}(\hat{x})$ разложение в ряд Тейлора (1.3.1);
- (B) $[\hat{L}_i, \hat{r}_j], [\hat{L}_i, \hat{p}_j], [\hat{L}_x, \hat{L}_y].$
- (г) $[\hat{L}_i,\hat{K}], [\hat{L}_i,U(r)],$ где $\hat{K}=\hat{\vec{p}}^2/2m$ оператор кинетической энергии, U(r) потенциал центрально-симметричного поля, r расстояние до центра поля.

Указание: для оператора момента импульса \hat{L}_i использовать определение в тензорном виде: $\hat{L}_i = \frac{1}{\hbar} \varepsilon_{ijk} \hat{r}_j \hat{p}_k$, где ε_{ijk} – антисимметричный тензор ($\varepsilon_{123} = 1$).

Задача 3.2. Показать, что выражение $\hat{T}_a \equiv \exp(\mathrm{i}\hat{p}a/\hbar)$ является оператором сдвига в координатном пространстве:

$$\hat{T}_a \psi(x) = \psi(x+a)$$
 (1.3.3)

 $\mathit{Указаниe}$: использовать для $\exp(\mathrm{i}\hat{p}a/\hbar)$ разложение в ряд Тейлора.

Задача 3.3. Доказать, что матрица $U = \langle p | x \rangle$ унитарна.

Задача 3.4. Доказать утверждение (1.3.2).

Задача 3.5. Исходя из неравенства (1.3.2), найти соотношение неопределенностей для случаев: (a) $\hat{a} = \hat{p}$, $\hat{b} = \hat{x}$; (б) $\hat{a} = \hat{K} = \frac{\hat{p}^2}{2m}$ — кинетическая и $\hat{b} = \frac{m\omega^2\hat{x}^2}{2}$ — потенциальная энергия гармонического осциллятора.

4. Квантовая динамика, уравнение Шредингера

Эволюция квантового состояния $|\Psi\rangle$ во времени описывается уравнением Шредингера

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle ,$$
 (1.4.1)

где \hat{H} — оператор Гамильтона (*гамильтониан*) квантовой системы, который также является и *оператором энергии* квантовой системы:

$$\langle E \rangle = \langle \Psi | \hat{H} | \Psi \rangle.$$

В *координатном* представлении волновая функция $\Psi(\vec{r},t) \equiv \langle \vec{r} | \Psi \rangle$, и уравнение Шредингера для квантовой частицы в потенциальном поле $U(\vec{r},t)$ принимает вид

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = \left[\frac{\hat{\vec{p}}^2}{2m} + U(\vec{r},t) \right] \Psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m} \Delta + U(\vec{r},t) \right] \Psi(\vec{r},t) . \tag{1.4.2}$$

Плотность вероятности $w(\vec{r},t) = |\Psi(\vec{r},t)|^2$ удовлетворяет уравнению непрерывности: $\frac{\partial w}{\partial t} + \operatorname{div} \vec{j} = 0$, где поток вероятности \vec{j} равен

$$\vec{j} = -\frac{i\hbar}{2m} \{ \Psi^* \vec{\nabla} \Psi - (\vec{\nabla} \Psi^*) \Psi \} . \tag{1.4.3}$$

Пусть $f = \langle \Psi \, | \, \hat{F} \, | \, \Psi \rangle$ — наблюдаемая (среднее значение) оператора \hat{F} . Оператор $\dot{\hat{F}}$, среднее значение которого дает производную по времени от наблюдаемой $f : \, \dot{f} = \langle \Psi \, | \, \dot{\hat{F}} \, | \, \Psi \rangle$, определяется как

$$\dot{\hat{F}} = \frac{\mathrm{d}}{\mathrm{d}t} \hat{F} = \frac{\partial \hat{F}}{\partial t} + \frac{\mathrm{i}}{\hbar} \left[\hat{H}, \hat{F} \right] . \tag{1.4.4}$$

Если $\dot{\hat{F}}=0$, то и $\dot{f}=0$, т.е. наблюдаемая f не зависит от времени, она является **интегралом движения**. Если же оператор \hat{F} от времени *явным образом* не зависит, т. е. $\frac{\partial}{\partial t}\hat{F}=0$, то f становится интегралом движения уже при выполнении условия $[\hat{H},\hat{F}]=0$.

Особый интерес представляют системы, гамильтониан \hat{H} которых не зави-

сит от времени явным образом. В них интегралом движения является энергия, и существует полный набор квантовых состояний с точно определенными значениями энергии, волновая функция которых принимает вид $\Psi_n(\vec{r},t) = \psi_n(\vec{r}) \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}E_nt}$. Подставив $\Psi_n(\vec{r},t)$ в уравнение Шредингера и сократив левую и правую часть на общий множитель $\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}E_nt}$, получим стационарное уравнение Шредингера:

$$\hat{H}\psi_n(\vec{r}) = E_n\psi_n(\vec{r}), \qquad (1.4.5)$$

в котором зависимость от времени выпала, и которое с математической точки зрения является уравнением на *собственные значения* $\{E_n\}$ и *собственные функции* $\{\psi_n(\vec{r})\}$ гамильтониана \hat{H} .

Поскольку гамильтониан \hat{H} эрмитов: $\hat{H}^+ = \hat{H}$, все его собственные значения $\{E_n\}$ вещественны, и *ортонормированный*

$$\int d^3r \,\psi_n^*(\vec{r})\psi_m(\vec{r}) = \delta_{nm} \tag{1.4.6}$$

набор собственных функций $\{\psi_n(\vec{r})\}$ обладает также свойством *полноты*:

$$\sum_{n} \psi_{n}^{*}(\vec{r}) \psi_{n}(\vec{r}') = \delta(\vec{r} - \vec{r}'). \tag{1.4.7}$$

Наличие *полного* набора $\{E_n\}$ и $\{\psi_n(\vec{r})\}$ дает возможность построить *оператор* **эволюции** – оператор сдвига по времени, известный также как *функция Грина*:

$$U(\vec{r}, \vec{r}'; t - t') = \sum_{n} e^{-iE_{n}(t - t')/\hbar} \psi_{n}(\vec{r}) \psi_{n}^{*}(\vec{r}').$$
 (1.4.8)

Оператор эволюции позволяет найти волновую функцию в *произвольный* момент времени t по начальной волновой функции, заданной в момент времени t_0 :

$$\Psi(\vec{r},t) = \int d^3r' U(\vec{r},\vec{r}';t-t_0)\Psi(\vec{r}',t_0). \qquad (1.4.9)$$

Литература: [7, §8–10, 17–19; 8, §8–10, 20–22; 2, §6, 7; 1, §15–18; 10, §15–17, 21; 4, §21, 22].

Задача 4.1. Найти решение уравнения Шредингера для свободной частицы (в постоянном поле $U(\vec{r},t) = U_0$). Масса частицы m, энергия E.

Задача 4.2. Найти поток плотности вероятности для волны де Бройля:

$$\psi(x,t) = \frac{1}{(2\pi\hbar)^{1/2}} \exp(ipx/\hbar - ip^2t/2m\hbar).$$

Задача 4.3. Найти поток плотности вероятности для волнового пакета, заданного в момент времени t=0:

$$\Psi(x,t=0) = \frac{1}{(2\pi a_0^2)^{1/4}} \exp\left(-\frac{(x-x_0)^2}{4a_0^2} + \frac{ip_0 x}{\hbar}\right).$$

Задача 4.4. Для частицы в потенциальном поле, используя оператор Гамильтона $\hat{H} = \frac{\hat{p}^2}{2m} + U(\hat{x})$, найти: (a) оператор скорости $\hat{v} = \dot{\hat{x}}$; и (б) оператор ускорения $\hat{a} = \ddot{\hat{x}}$.

Задача 4.5. Гамильтониан заряженной частицы в электромагнитном поле имеет вид $\hat{H} = \frac{\left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r},t)\right)^2}{2m} + e\phi(\vec{r},t)$.

Найти: (a) оператор скорости $\hat{\vec{v}} = \dot{\hat{\vec{r}}}$, (б) оператор ускорения $\hat{\vec{a}} = \ddot{\hat{r}}$.

Задача 4.6. Построить оператор эволюции (1.4.8) для волновой функции свободной частицы (в одномерном случае).

5. Одномерное движение в потенциале, стационарный случай

5.1. Общие свойства одномерного движения

Стационарное уравнение Шредингера для частицы массы m в потенциале U(x)

$$-\frac{\hbar^2}{2m}\Delta\psi + U(x)\psi = E\psi \tag{1.5.1}$$

является линейным дифференциальным уравнением *второго* порядка и имеет два линейно независимых решения $\psi_{1,2}(x)$. Произвольное решение дается их линейной комбинацией: $\psi(x) = c_1 \psi_1(x) + c_2 \psi_2(x)$, где коэффициенты c_1 , c_2 определяются из граничных условий и условия нормировки.

В ряде случаев координатное пространство распадается на несколько областей, в каждой из которых имеется свое решение, и возникает необходимость «сшивки» смежных решений $\psi_a(x)$, $\psi_b(x)$ на границе раздела $x=\overline{x}$. Требования сшивки:

• непрерывность волновой функции $\psi_a(\overline{x}) = \psi_b(\overline{x})$,

- при условии ограниченности потенциала: $|U(x)| \le L < \infty$ в точке $x = \overline{x} he$ прерывность производной $\psi_a'(\overline{x}) = \psi_b'(\overline{x})$,
- при *наличии* в точке раздела $x = \overline{x}$ *сингулярности* потенциала U(x) вида $G \, \delta(x \overline{x})$ (где G = const) *скачок* производной:

$$\psi'(\bar{x}+0) - \psi'(\bar{x}-0) = \frac{2mG}{\hbar^2} \psi(\bar{x}).$$
 (1.5.2)

В случае *инфинитного* движения типичной является задача о прохождении падающей волны через область потенциального поля и нахождении амплитуд отраженной (рассеянной) и прошедшей волны. Общая нормировка определяется нормировкой *падающей* волны, а граничное условие заключается в требовании, чтобы за областью потенциального поля осталась лишь уходящая (прошедшая) волна. Искомым результатом тут является коэффициент прохождения $T = j_{\rm np}/j_{\rm nag}$ и отражения $R = j_{\rm orp}/j_{\rm nag}$, где $j_{\rm nag}$, $j_{\rm np}$ и $j_{\rm orp}$ — поток падающей, прошедшей и отраженной волны соответственно. Очевидно, что T + R = 1, так как $j_{\rm orp} + j_{\rm np} = j_{\rm nag}$.

В случае *финитного движения* типичной является задача о нахождении спектра энергетических уровней в квантовой системе и волновых функций соответствующих квантовых состояний. Условие нормировки принимает вид: $\int \! dx \, |\psi(x)|^2 = 1, \text{ а граничные условия фактически сводятся к требованию, чтобы волновая функция$ *затухала*за пределами классически доступной области. Важным следствием этого требования является*дискретность*энергетического спектра финитного движения.

Для финитного движения в *одномерном случае* справедливо утверждение о *невырожденности энергетических уровней*: не существует двух *различных* решений с одной и той же энергией. Из этого утверждения вытекает ряд следствий:

- (a) волновая функция представима в вещественном виде: $\psi(x) = \psi^*(x)$;
- (б) в основном (наинизшем) состоянии волновая функция не имеет узлов (нулей);
- (в) *осцилляционная теорема*: число узлов (нулей) волновой функции равно n, где $n=0,\ 1,\ 2,\ \dots$ номер уровня;

(г) если потенциальное поле U(x) симметрично по отношению к операции отражения U(x) = U(-x), то волновая функция также обладает определенной четностью: $\psi(x) = (-1)^n \psi(-x)$.

Литература: [7, §21,25; 8, §21–22, 24; 11, §5; 2, с. 41–45,53–62; 4, §24].

Задача 5.1. Найти волновую функцию и энергию квантовых состояний частицы массы m в потенциале U(x) = 0 при |x| < a/2 и $U(x) = \infty$ при $|x| \ge a/2$.

Задача 5.2. Как изменится спектр уровней в задаче 5.1, если к потенциалу U(x) добавить $U_1(x) = G\delta(x)$, где константа G > 0?

Задача 5.3. Найти волновую функцию и энергию связанного состояния частицы с массой m в потенциале $U(x) = -G\delta(x)$, где константа G > 0.

Задача 5.4. Найти амплитуду прошедшей и отраженной волны при рассеянии квантовой частицы с энергией E>0, массой m на потенциале $U(x)=-G\delta(x)$, вычислить коэффициенты прохождения и отражения. Обсудить поведение амплитуд прошедшей и отраженной волны при аналитическом продолжении в область E<0.

Задача 5.5. Найти спектр энергий связанных квантовых состояний частицы массы m в потенциале $U(x) = -U_0$ при |x| < a и U(x) = 0 при $|x| \ge a$.

Указание: Рассмотреть по отдельности случаи *четных* и *нечетных* волновых функций. При какой глубине ямы U_0 появится n-е *четное* и n-е *нечетное* связанное состояние?

Задача 5.6. Частица массы m находится в потенциале:

$$U(x) = {\infty, \text{ при } x \le 0; -U_0, \text{ при } 0 < x \le a; 0, \text{ при } x > a}.$$

При какой минимальной глубине ямы U_0 появится первое связанное состояние?

Задача 5.7. Найти энергии состояний дискретного спектра для частицы массы m в потенциале двух δ -ям: $U(x) = -G \cdot (\delta(x-a) + \delta(x+a))$.

(a) Изучить качественно зависимость энергии состояний от расстояния между δ-ямами. (б) При каком расстоянии между δ -ямами антисимметричное состояние исчезнет?

5.2. Движение квантовых частиц в периодическом потенциале

Рассмотрим потенциал U(x), обладающий симметрией по отношению к сдвигу:

$$\hat{T}_a U(x) = U(x+a) = U(x),$$
 (1.5.3)

где $\hat{T}_a = \exp(\mathrm{i}\hat{p}a/\hbar)$ — *оператор совига* $x \to x + a$ (см. задачу 3.2), a — период потенциала. Примером такого потенциала для электронов в кристалле является поле, создаваемое ионной кристаллической решеткой.

Поскольку оператор \hat{T}_a коммутирует с гамильтонианом $\hat{H}=\hat{p}^2/2m+U(x)$, существует базис — полный набор *таких* состояний $\{\psi_{\lambda}(x)\}$, которые *одновременно* диагонализуют не только гамильтониан: $\hat{H}\psi_{\lambda}(x)=E\psi_{\lambda}(x)$, но и оператор сдвига (*теорема Блоха*, предложенная *Феликсом Блохом* в 1928 г.):

$$\hat{T}_a \psi_{\lambda}(x) \equiv \psi_{\lambda}(x+a) = \lambda \psi_{\lambda}(x), \qquad (1.5.4)$$

где λ — собственное значение оператора сдвига есть тот численный множитель, на который умножается волновая функция $\psi_{\lambda}(x)$ при сдвиге x на период a потенциала U(x).

Поскольку при сдвиге на период a задача остается moй же camoй, так как в силу симметрии периодический потенциал $U(x+a) \rightarrow U(x)$, то той же самой должна остаться и наблюдаемая плотность вероятности:

$$w(x+a) = |\psi_{\lambda}(x+a)|^2 = |\lambda|^2 |\psi_{\lambda}(x)|^2 = |\lambda|^2 w(x) = w(x)$$

откуда $|\lambda|=1$. В общем случае параметр λ можно представить в виде $\lambda\equiv {\rm e}^{{\rm i} qa}$, где величина $\hbar q$ носит название *квазиимпульс*. Для учета всех *уникальных* значений параметра λ и соответствующих им решений $\psi_{\lambda}(x)$ для q достаточно ограничиться диапазоном $-\frac{\pi}{a} \le q \le \frac{\pi}{a}$. Далее в целях удобства мы будем использовать обозначения $\psi_q(x) \equiv \psi_{\lambda(q)}(x)$.

С учетом сказанного для построения решения $\psi_q(x)$ достаточно выбрать любую ячейку (элемент периодичности), например: $0 \le \overline{x} \le a$. Искомая волновая функция $\psi_q(\overline{x})$ внутри выбранной ячейки есть линейная комбинация пары линейно независимых решений $\overline{\phi}_{1,2}(\overline{x};E)$ стационарного уравнения Шредингера:

$$\hat{H}$$
 $\varphi_i(\overline{x}; E) = E$ $\varphi_i(\overline{x}; E)$, где $i = 1, 2;$ (1.5.5)

$$\overline{\psi}_{q}(\overline{x}) = c_{1}\overline{\varphi}_{1}(\overline{x}; E) + c_{2}\overline{\varphi}_{2}(\overline{x}; E), \qquad (1.5.6)$$

где *черта сверху* означает, что функции $\overline{\psi}_q(\overline{x})$ и $\overline{\phi}_{1,2}(\overline{x};E)$ определены внутри ячейки $0 \le \overline{x} \le a$. Внутри соседней ячейки $a \le \overline{\overline{x}} \le 2a$ значения волновой функции $\overline{\overline{\psi}}_q(\overline{\overline{x}})$ в силу теоремы Блоха (1.5.4) могут быть выражены через значения $\overline{\psi}_q(\overline{x})$, определенные в первой ячейке:

$$\overline{\overline{\psi}}_{q}(\overline{\overline{x}}) = \overline{\psi}_{q}(\overline{\overline{x}} - a)e^{iqa} . \tag{1.5.7}$$

Сшивая $\overline{\psi}_q(\overline{x})$ и $\overline{\overline{\psi}}_q(\overline{\overline{x}})$ на их общей границе x=a, из условия непрерывности волновой функции имеем:

$$(\overline{\psi}_{q}(\overline{x}=a) - \overline{\psi}_{q}(\overline{x}=a)) = \overline{\psi}_{q}(0)e^{iqa} - \overline{\psi}_{q}(a) =$$

$$= c_{1}(\overline{\varphi}_{1}(0;E)e^{iqa} - \overline{\varphi}_{1}(a;E)) + c_{2}(\overline{\varphi}_{2}(0;E)e^{iqa} - \overline{\varphi}_{2}(a;E)) = 0.$$
(1.5.8)

Если потенциал U(x) в точке x = a конечен¹, то непрерывна и её производная:

$$\left(\overline{\psi}'_{q}(\overline{x}=a) - \overline{\psi}'_{q}(\overline{x}=a)\right) = \overline{\psi}'_{q}(0)e^{iqa} - \overline{\psi}'_{q}(a) =
= c_{1}\left(\overline{\varphi}'_{1}(0;E)e^{iqa} - \overline{\varphi}'_{1}(a;E)\right) + c_{2}\left(\overline{\varphi}'_{2}(0;E)e^{iqa} - \overline{\varphi}'_{2}(a;E)\right) = 0.$$
(1.5.9)

Система уравнений (1.5.8),(1.5.9) для коэффициентов c_1 , c_2 имеет нетривиальное решение при условии равенства её детерминанта нулю:

$$\det \begin{pmatrix} \overline{\varphi}_{1}(0;E)e^{iqa} - \overline{\varphi}_{1}(a;E) & \overline{\varphi}_{2}(0;E)e^{iqa} - \overline{\varphi}_{2}(a;E) \\ \overline{\varphi}'_{1}(0;E)e^{iqa} - \overline{\varphi}'_{1}(a;E) & \overline{\varphi}'_{2}(0;E)e^{iqa} - \overline{\varphi}'_{2}(a;E) \end{pmatrix} = 0.$$
 (1.5.10)

Разрешая это уравнение относительно энергии E, найдем ее зависимость от параметра q: E = E(q). Подстановка E(q) в уравнения (1.5.8) и (1.5.9) позволяет оп-

 $^{^{1}}$ Случай $\,\delta\,$ -функционной сингулярности рассмотрен в решении задачи 5.8.

ределить коэффициенты c_1, c_2 и найти соответствующие волновые функции $\overline{\psi}_q(\overline{x})$ (1.5.6).

Энергия E(q) — периодическая функция q с периодом $2\pi/a$, с минимумом при q=0 и максимумом при $q=\pm\pi/a$, и все промежуточные значения E(q) образуют зону — область *непрерывного* спектра. Напомним, что для нахождения полного набора решений достаточно ограничиться выбором q, лежащим внутри $-\frac{\pi}{a} \le q \le \frac{\pi}{a}$.

Вблизи дна зоны q = 0 спектр E(q) напоминает спектр свободной частицы:

$$E(q) \approx E(q=0) + (\hbar q)^2 / 2m_{3\dot{\Phi}\dot{\Phi}}$$
, (1.5.11)

где $m_{9 \dot{\Phi} \dot{\Phi}} - 9 \dot{\Phi} \dot{\Phi}$ ективная масса частицы, а $v(q) = \hbar^{-1} \frac{\mathrm{d} E(q)}{\mathrm{d} q} = \frac{\hbar q}{m_{9 \dot{\Phi} \dot{\Phi}}}$ — её скорость.

Литература: [11, §11; 2, с. 811–826; 9,с. 261–269; 12, с. 301–305; 4, §59].

Задача 5.8. В потенциале $U(x) = -\sum_{n=-\infty}^{\infty} G\delta(x-na)$, $-\infty < x < \infty$ (модель бесконечного кристалла) найти энергетический спектр и волновые функции состояний с энергией E < 0. В пределе $\frac{mGa}{\hbar^2} \gg 1$ найти эффективную массу и скорость частицы.

Задача 5.9. В потенциале $U(x) = -\sum_{n=-N}^{N} G\delta(x-na)$ при $-Na \le x \le Na$ и $U(x) = \infty$

при |x| > Na (модель кристалла конечной длины L = 2Na) найти энергетический спектр и волновые функции состояний с энергией E < 0.

5.3. Гармонический осциллятор

Гамильтониан гармонического осциллятора

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \frac{\hbar\omega}{2} \left(\hat{\eta}^2 + \xi^2 \right) = \hbar\omega \left(\hat{a}^+ \hat{a} + \frac{1}{2} \right), \tag{1.5.12}$$

где m — масса, ω — частота осциллятора. Безразмерные операторы $\hat{\eta}=\hat{p}\ /\ p_0$, $\hat{\xi}=\hat{x}\ /\ x_0$, а размерные параметры p_0,x_0 определены как

$$p_0 = \sqrt{m\omega\hbar}, \qquad x_0 = \sqrt{\hbar/m\omega}. \tag{1.5.13}$$

Операторы уничтожения и рождения (названия отражают их свойства (1.5.19))

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{x_0} + i \frac{\hat{p}}{p_0} \right) = \frac{1}{\sqrt{2}} \left(\hat{\xi} + i \hat{\eta} \right), \qquad \hat{a}^+ = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{x_0} - i \frac{\hat{p}}{p_0} \right) = \frac{1}{\sqrt{2}} \left(\hat{\xi} - i \hat{\eta} \right) \quad (1.5.14)$$

подчиняются коммутационному соотношению

$$\left[\hat{a}, \hat{a}^+\right] = 1. \tag{1.5.15}$$

В свою очередь, координата и импульс выражаются через \hat{a} и \hat{a}^+ как

$$\hat{x} = \frac{x_0}{\sqrt{2}} (\hat{a} + \hat{a}^+), \qquad \hat{p} = \frac{p_0}{i\sqrt{2}} (\hat{a} - \hat{a}^+).$$
 (1.5.16)

Энергетический спектр квантового осциллятора эквидистантен с шагом $\hbar\omega$:

$$E_n = \hbar\omega(n+1/2)$$
, где $n = 0, 1, 2, ...,$ (1.5.17)

а волновые функции в координатном представлении

$$\Psi_n(x/x_0) = C_n H_n(x/x_0) \exp(-(x^2/2x_0^2)), \quad C_n = (2^n n! x_0 \sqrt{\pi})^{-1/2}, \quad (1.5.18)$$

где $H_n(\xi)$ – полиномы Эрмита: $H_n^{\ ''} - 2\xi H_n^{\ '} + 2nH_n = 0$.

В *представлении чисел заполнения* стационарному состоянию с энергией E_n отвечает вектор квантового состояния $|n\rangle$, где n — число «квантов» энергии $\hbar\omega$, содержащихся в данном состоянии. Действие оператора *уничтожения* \hat{a} понижает число квантов, а действие оператора *рождения* \hat{a}^+ — повышает:

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \qquad \hat{a}^+|n\rangle = \sqrt{n+1}|n+1\rangle, \qquad (1.5.19)$$

причем для *основного состояния* (с числом квантов n=0) результат равен

$$\hat{a}|0\rangle = 0. \tag{1.5.20}$$

Произвольное состояние $|n\rangle$ может быть получено из основного состояния как

$$\left| n \right\rangle = \frac{\left(\hat{a}^{+} \right)^{n}}{\sqrt{n!}} \left| 0 \right\rangle. \tag{1.5.21}$$

Собственное состояние оператора \hat{a} называется **когерентным состоянием**:

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle,\tag{1.5.22}$$

где комплексное число $\alpha \equiv (x/x_0 + \mathrm{i}\, p/p_0)/\sqrt{2}$ характеризует положение центра волнового пакета на фазовой плоскости $(p/p_0, x/x_0)$. Когерентное состояние обладает максимальной локализацией, допускаемой соотношением неопределенностей Гейзенберга: $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle = \frac{1}{4}\hbar^2$, причем размер пакета не зависит от параметра α и связанной с ним средней энергии состояния (см. задачи 5.15 и 5.16). В фиксированный момент времени когерентное состояние может быть представлено в виде суперпозиции стационарных состояний:

$$\left|\alpha\right\rangle = e^{-\frac{1}{2}\left|\alpha\right|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \left|n\right\rangle,\tag{1.5.23}$$

и в последующие моменты времени эта суперпозиция принимает вид

$$\left|\alpha;t\right\rangle = e^{-\frac{1}{2}\left|\alpha\right|^{2} - \frac{i}{2}\omega t} \sum_{n=0}^{\infty} \frac{\left(\alpha e^{-i\omega t}\right)^{n}}{\sqrt{n!}} \left|n\right\rangle,\tag{1.5.24}$$

где учтено, что вектор стационарного состояния с энергией E_n зависит от времени как $|n;t\rangle = \mathrm{e}^{-\mathrm{i}\,E_n t/\hbar}|n\rangle$.

Литература: [1, §26, 32; 2, с. 46–51; 7, §23; 9, с. 349–360, 371–383; 12, с. 309–322; 10, §25, 27; 4, §23].

Задача 5.10. Исходя из уравнения (1.5.20) в координатном представлении

$$|\hat{a}|0\rangle = 0 \implies \frac{1}{\sqrt{2}} \left(\frac{x}{x_0} + i\frac{\hat{p}}{p_0}\right) \Psi_0(x) = \frac{1}{\sqrt{2}x_0} \left(x + x_0^2 \frac{d}{dx}\right) \Psi_0(x) = 0, \quad (1.5.25)$$

найти волновую функцию основного состояния осциллятора.

Задача 5.11. Вычислить коммутаторы: (a) $[\hat{a},(\hat{a}^+)^n]$; (б) $[\hat{H},\hat{a}^+]$, $[\hat{H},(\hat{a}^+)^n]$, где \hat{H} – гамильтониан осциллятора (1.5.12).

Задача 5.12. Доказать, что состояние $|n\rangle$, определенное формулой (1.5.21), является собственным состоянием гамильтониана \hat{H} (1.5.12).

Задача 5.13. Для состояния $|n\rangle$ вычислить: (a) $\langle x \rangle$, $\langle x^2 \rangle$; (б) $\langle p \rangle$, $\langle p^2 \rangle$. Найти произведение неопределенностей $\langle (x - \langle x \rangle)^2 \rangle \langle (p - \langle p \rangle)^2 \rangle$.

Задача 5.14. Доказать, что состояние $|\alpha\rangle$, определенное формулой (1.5.23), является собственным состоянием оператора \hat{a} .

Задача 5.15. Для когерентного состояния $|\alpha\rangle$ (1.5.23) найти распределение вероятности по энергии и вычислить среднюю энергию состояния.

Задача 5.16. Для когерентного состояния $|\alpha\rangle$ (1.5.23) вычислить: (a) $\langle x\rangle, \langle x^2\rangle$; (б) $\langle p\rangle, \langle p^2\rangle$; (в) произведение неопределенностей $\langle (x-\langle x\rangle)^2\rangle \cdot \langle (p-\langle p\rangle)^2\rangle$.

Задача 5.17. Для когерентного состояния $|\alpha;t\rangle$ (1.5.24) найти: (a) $\langle x(t)\rangle$, $\langle x^2(t)\rangle$; (б) $\langle p(t)\rangle$, $\langle p^2(t)\rangle$; (в) произведение неопределенностей $\langle (x-\langle x\rangle)^2\rangle\langle (p-\langle p\rangle)^2\rangle$. Зависит ли оно от времени t?

6. Квазиклассическая динамика. Приближение ВКБ, квантование Бора-Зоммерфельда, квантовое туннелирование

В случае, когда величина квантового параметра \hbar в масштабах рассматриваемой задачи мала, говорят о *квазиклассическом пределе* (ниже мы ограничимся рассмотрением одномерного случая). В этом пределе становится возможным ввести понятие *покальной* (определяемой в каждой точке x) длины дебройлевской волны²:

$$\lambda(x) = \frac{\hbar}{p(x)}, \quad p(x) = \sqrt{2m(E - U(x))},$$
 (1.6.1)

где E— энергия частицы и m— её масса. Применимость такого подхода подразумевает, что масштаб, на котором изменяется потенциал U(x) внешнего поля, мал по сравнению с длиной волны:

$$\left| \frac{\mathrm{d}\lambda(x)}{\mathrm{d}x} \right| \ll 1. \tag{1.6.2}$$

В общем случае оба линейно независимых решения уравнения Шредингера в *классически доступной* (U(x) < E) области имеют вид бегущих во встречных направлениях волн (приближение *Вентцеля–Крамерса–Бриллюэна* (ВКБ)):

 $^{^{2}}$ Аналогично тому, как это делается в геометрической оптике в оптически неоднородных средах.

$$\Psi_{\pm}(x) = \frac{A_{\pm}}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int_{-\infty}^{x} p(x') dx'}.$$
 (1.6.3)

В классически недоступной области (U(x) > E) соответствующая пара решений имеет вид падающих и растущих экспонент

$$\Psi_{\pm}(x) = \frac{B_{\pm}}{\sqrt{\kappa(x)}} e^{\pm \frac{1}{h} \int_{-\infty}^{x} \kappa(x) dx}, \quad \kappa(x) = \sqrt{2m(U(x) - E)} = |p(x)|.$$
 (1.6.4)

Классически доступная область может быть ограничена классической точкой поворота: U(x=a)=E. Соответствующее правило сшивки решений (1.6.3), (1.6.4) в смежных областях для случая решения, затухающего вглубь классически недоступной области, было получено X. А. Крамерсом в 1926 г.:

$$\Psi(x) = \frac{C}{\sqrt{p(x)}} \cos\left(\frac{1}{\hbar} \left| \int_{a}^{x} p(x') dx' \right| - \frac{\pi}{4} \right) \quad \text{при } U(x) < E,$$

$$\Psi(x) = \frac{C}{2\sqrt{p(x)}} \exp\left(-\frac{1}{\hbar} \left| \int_{a}^{x} p(x') dx' \right| \right) \quad \text{при } U(x) > E,$$

$$(1.6.5)$$

где C — нормировочный множитель. Это правило применимо при условии, что производная nomenциала U(x) в точке поворота конечна. В случае, когда классически доступная область ограничена бесконечной потенциальной стенкой, приближение ВКБ справедливо вплоть до стенки, на которой волновая функция должна обращаться в нуль:

$$\Psi(x < a) = \frac{C}{\sqrt{p}} \sin\left(\frac{1}{\hbar} \int_{a}^{x} p \, dx\right); \quad \Psi(x > a) = 0, \text{ так как } (U(x \ge a) = \infty). \quad (1.6.6)$$

Для случая финитного движения, ограниченного классическими точками поворота a и b, возникает *правило квантования Бора-Зоммерфельда*:

$$\frac{1}{2\pi\hbar} \oint p(x; E) \, \mathrm{d}x = n + \frac{1}{2}, \quad \text{где } n = 0, 1, \dots, \tag{1.6.7}$$

которое ввиду зависимости $p(x;E) \equiv \sqrt{2m(E-U(x))}$ от энергии E задает связь между энергией квантового состояния и его номером n : $E_n = E(n)$.

Другой класс задач связан с *квантовым туннелированием* сквозь потенциальный барьер. В квазиклассическом приближении проницаемость потенци-

ального барьера, определяемого как вероятность подбарьерного прохождения (*туннелирования*) квантовой частицы, равна

$$D = \exp\left(-\frac{2}{\hbar} \int_{a}^{b} \kappa(x) \, \mathrm{d}x\right) \equiv \exp\left(-\frac{2}{\hbar} \int_{a}^{b} \sqrt{2m(U(x) - E)} \, \mathrm{d}x\right),\tag{1.6.8}$$

где a и b – точки входа (под барьер) и выхода: U(a) = U(b) = E.

Литература: [1, §21–24; 2, с. 149–165; 7, §46–48, 50; 10, §37–40].

Задача 6.1. Используя квазиклассическое приближение, найти спектр энергий гармонического осциллятора.

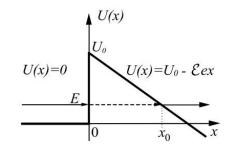
Задача 6.2. Найти уровни энергии для частицы в потенциале $U(x) = \alpha |x|$.

Задача 6.3. Найти уровни энергии для частицы в потенциале $U(x) = -e^2/|x|$.

Задача 6.4. Найти уровни энергии для частицы в потенциале $U(x) = \beta x^4$.

Задача 6.5. Найти уровни энергии для частицы в потенциале $U(x) = \gamma x^3$ при x > 0 и $U(x) = \infty$ при $x \le 0$.

Задача 6.6. Вычислить плотность тока холодной эмиссии электронов из металла в зависимости от приложенного электрического поля \mathcal{E} (см. рисунок). Высота потенциального барьера на границе металла U_0 , кинетическая энергия электронов внутри металла E.



7. Движение в центральном поле.

7.1. Общие свойства движения в центральном поле.

В центрально-симметричном поле момент сил со стороны поля равен нулю, потенциал U(r) зависит только от расстояния до центра $r=|\vec{r}|$ и не зависит от углов.

Оператор момента количества движения $\hat{L} \equiv \frac{1}{\hbar} (\vec{r} \times \hat{\vec{p}})$ коммутирует с оператором Гамильтона (см. задачу 3.1(г)):

$$\hat{H} = \frac{\hat{p}^2}{2\mu} + U(r) = -\frac{\hbar^2}{2\mu} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{\hbar^2 \hat{\vec{L}}^2}{2\mu r^2} + U(r)$$
 (1.7.1)

и является интегралом движения (здесь μ – масса частицы). При отсутствии внешних моментов сил движение по углу является, по сути, свободным, не зависящим от потенциала U(r), и волновая функция принимает вид

$$\psi(r,\theta,\varphi) = R_{nl}(r)Y_{lm}(\theta,\varphi), \qquad (1.7.2)$$

где $Y_{lm}(\theta, \varphi)$ — сферические (шаровые) функции, являющиеся собственными функциями операторов $\hat{\vec{L}}^2$ и \hat{L}_z — проекции на ось квантования z:

$$\hat{\vec{L}}^2 Y_{lm} = l(l+1)Y_{lm}; \quad \hat{L}_z Y_{lm} = mY_{lm}. \tag{1.7.3}$$

Здесь l,m — целые числа, причем проекция момента на ось квантования m принимает 2l+1 значения, лежащие в интервале $-l \le m \le l$. Функции $Y_{lm}(\theta,\phi)$ удовлетворяют условию ортонормированности

$$\int d\Omega Y_{lm}^*(\theta, \varphi) Y_{l'm'}(\theta, \varphi) = \delta_{ll'} \delta_{mm'}. \qquad (1.7.4)$$

При отражении координат $\vec{r} \to -\vec{r}$ угловые переменные преобразуются как $\theta \to \pi - \theta$ и $\phi \to \pi + \phi$. Тем самым *четность волновой функции* $\psi(r,\theta,\phi)$ (1.7.2) определяется исключительно лишь четностью сферических функций

$$Y_{lm}(\pi - \theta, \pi + \varphi) = (-1)^{l} Y_{lm}(\theta, \varphi)$$
 (1.7.5)

и не зависит от потенциала U(r) .

В свою очередь, вся зависимость от потенциала в центральносимметричном поле U(r) содержится в радиальной функции $R_{nl}(r)$, удовлетворяющей уравнению

$$-\frac{\hbar^2}{2\mu} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) R_{nl}(r) + U_{9\varphi\varphi}(r) R_{nl}(r) = E_{nl} R_{nl}(r), \qquad (1.7.6)$$

где эффективный потенциал есть сумма «центробежного потенциала» и U(r):

$$U_{9\phi\phi}(r) = \frac{\hbar^2 l(l+1)}{2\mu r^2} + U(r). \tag{1.7.7}$$

Отметим, что уравнение (1.7.6) не зависит от m- проекции момента \hat{L} на ось квантования. Это означает, что в центральном поле решения с энергией E_{nl} вырождены, как минимум, (2l+1)-кратно — по числу различных значений проекции m. Подстановка $R(r) = \chi(r)/r$ приводит уравнение (1.7.6) к виду

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}\chi_{nl}(r) + U_{9\varphi\varphi}(r)\chi_{nl}(r) = E_{nl}\chi_{nl}(r), \qquad (1.7.8)$$

совпадающему с уравнением Шредингера для одномерной задачи с потенциалом $U_{9\varphi}(r)$ и с граничным условием $\chi(r=0)=0$.

Литература: [7, §32; 2, с. 128–135; 11, §15; 10, §23; 4, §25].

Задача 7.1. Пусть $U(r) = -\gamma / r^s$. Пользуясь соотношением неопределенностей, оценить энергию основного состояния.

Задача 7.2. Показать, что для произвольного потенциала, в котором отсутствует падение на центр, в пределе $r \to 0$ радиальная функция $R_{nl}(r) \propto r^l$.

Задача 7.3. Определить уровни энергии для частицы с моментом l=0, находящейся в центрально-симметричном потенциале $U(r)=-U_0$ при r < a и U(r)=0 при $r \ge a$. При какой минимальной глубине U_0 появится первый уровень?

7.2. Атом водорода

Энергетический спектр атома водорода описывается формулой

$$E_n = -\frac{\mathrm{Ry}}{n^2} \,, \tag{1.7.9}$$

где $n = (n_r + l + 1)$ — главное квантовое число, $n_r = 0, \ldots, n-1$ — радиальное квантовое число, $l = 0, \ldots, n-1$ — орбитальный момент, $Ry \approx 13.6 \ \mathrm{эB}$ — постоянная Ридберга. Каждое состояние с определенным l вырождено (2l+1)-кратно по проекции момента m. Кроме того, имеется дополнительное «случайное» вырождение, специфичное исключительно для кулоновского потенциала, проявив-

шееся в том, что энергия (1.7.9) зависит только от *главного квантового числа n*, а не от n_r и l по отдельности.

Состояния атома водорода обозначаются как nl, где для орбитального момента вместо числовых значений $l=0,\,1,\,2,\,3,\,\dots$ используются буквенные обозначения: $S,\,P,\,D,\,F,\,\dots$ соответственно. В частности, основное состояние атома водорода обозначается как 1S, состояния с n=2 и l=1 обозначаются как 2P и так далее.

Литература: [7, §36; 1, §38; 2, с. 140–148; 11, §16; 10, §24].

Задача 7.4. Исходя из соотношения неопределенностей, оценить энергию основного состояния атома водорода.

Задача 7.5. Найти степень вырождения уровня атома водорода как функцию главного квантового числа n.

Задача 7.6. Оценить размер атома водорода как функцию главного квантового числа n.

Задача 7.7. Для суперпозиции квантовых состояний атома водорода 2S и 2P

$$\Psi(r,\theta,\phi) = c_1 R_{20}(r) Y_{00}(\theta,\phi) + c_2 R_{21}(r) Y_{10}(\theta,\phi)$$
 (1.7.10)

вычислить дипольный момент $\langle \hat{\vec{d}} \rangle = \langle e\hat{\vec{r}} \rangle$ и найти значения коэффициентов c_1 и c_2 , при которых величина дипольного момента будет максимальна.

Задача 7.8. Могут ли уровни атома водорода иметь степень вырождения 2, 4, 7, 9, 15, 16, 25? Какие из этих значений возможны в произвольном (*не кулоновском*!) потенциале?

8. Движение частицы в магнитном поле. Спин.

8.1. Электрон в однородном магнитном поле

Гамильтониан электрона в электромагнитном поле

$$\hat{H} = \frac{1}{2m} \left(\hat{\vec{p}} - \frac{e}{c} \vec{A}(\vec{r}, t) \right)^2 + e \varphi(\vec{r}, t).$$
 (1.8.1)

В *однородном* магнитном поле \vec{B} , выбрав вектор-потенциал $\vec{A} = \frac{1}{2}(\vec{B} \times \vec{r})$, имеем

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m} - \frac{e}{2mc} (\vec{r} \times \hat{\vec{p}}) \vec{B} + \frac{e^2}{8mc^2} (\vec{B} \times \vec{r})^2 + e\varphi =$$

$$= \frac{\hat{\vec{p}}^2}{2m} - \hat{\vec{m}} \vec{B} + \frac{e^2}{8mc^2} (\vec{B} \times \vec{r})^2 + e\varphi = \frac{\hat{\vec{p}}^2}{2m} + \mu_B \hat{\vec{L}} \vec{B} + \frac{e^2}{8mc^2} (\vec{B} \times \vec{r})^2 + e\varphi ,$$
(1.8.2)

где

$$\hat{\vec{m}} = -\mu_B \hat{\vec{L}} \tag{1.8.3}$$

магнитный дипольный момент электрона 3 , связанный с орбитальным моментом импульса $\hat{\vec{L}}$, $\mu_B = \frac{|e|\hbar}{2mc}$ — гиромагнитный фактор (*магнетон Бора*). Линейное по полю \vec{B} слагаемое описывает *парамагнитное* взаимодействие электрона с внешним полем, квадратичное по \vec{B} слагаемое отвечает за *диамагнитные* свойства атома.

Литература: [7, §111, 112; 11, §33].

Задача 8.1. Исходя из гамильтониана (1.8.1) и полагая магнитное поле однородным и направленным вдоль оси z ($\vec{B} \parallel \vec{e}_z$), а также $\phi = 0$: (а) найти оператор скорости электрона $\hat{\vec{v}}$; (б) вычислить коммутатор для компонент скоростей [v_i, v_j]; (в) найти спектр энергетических уровней.

Задача 8.2. Оценить минимальный размер квантового состояния электрона в магнитном поле.

Задача 8.3. Оценить диамагнитную восприимчивость атома водорода в основном состоянии.

8.2. Спин электрона

Квантовое состояние *спина* (внутреннего момента импульса электрона) описывается *спинором* – двухкомпонентной амплитудой $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$, где компоненты ψ_1 и ψ_2 являются амплитудами вероятности обнаружить электрон в состояни-

 $^{^{3}}$ В формуле (1.8.3) явным образом учтено, что заряд электрона отрицателен: $e=-\mid e\mid$!

ях с проекциями спина $\pm \frac{1}{2}$ на выбранную ось квантования. Оператор спина $\hat{\vec{s}}$ выражается через *матрицы Паули* $\vec{\sigma}$:

$$\hat{\vec{s}} = \frac{1}{2}\vec{\sigma}; \quad \vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z), \quad \text{где } \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad (1.8.4)$$

которые вместе с единичной матрицей I образуют *полный базис матриц* размера 2×2 . В частности, произвольная матрица 2×2 может быть представлена как

$$A = c_0 I + \sum_{i=1}^{3} c_i \sigma_i$$
, где $c_0 = \text{Tr } A$, $c_i = \text{Tr } A \sigma_i$. (1.8.5)

Свойства матриц Паули:

(a) эрмитовость: $\sigma_i^+ = \sigma_i$, и (б) «бесследовость» $\operatorname{Tr} \sigma_i = 0$.

Коммутационные свойства. Для антикоммутатора матриц Паули имеем

$$\left\{\sigma_{i},\sigma_{j}\right\} \equiv \sigma_{i}\sigma_{j} + \sigma_{j}\sigma_{i} = 2I\delta_{ij},$$
 (1.8.6)

откуда следует, что $\sigma_i^{\ 2}=I$ для любого i . В свою очередь, **коммутатор** матриц Паули равен

$$\left[\sigma_{i},\sigma_{j}\right] \equiv \sigma_{i}\sigma_{j} - \sigma_{j}\sigma_{i} = 2i\varepsilon_{ijk}\sigma_{k}, \qquad (1.8.7)$$

что согласуется с коммутационными свойствами оператора спина $\begin{bmatrix} \hat{s}_i, \hat{s}_j \end{bmatrix} = \mathrm{i}\, \epsilon_{ijk} \hat{s}_k$.

При *повороте системы пространственных координат* вокруг произвольной оси \vec{n} на угол ϕ преобразование спинора дается *оператором конечного поворота* — унитарной матрицей размерности 2×2 :

$$\psi' = \exp\left(\frac{i\vec{n}\vec{\sigma}}{2}\phi\right)\psi = \left[I\cos\left(\frac{\phi}{2}\right) + i(\vec{n}\vec{\sigma})\sin\left(\frac{\phi}{2}\right)\right]\psi. \tag{1.8.8}$$

Литература: [7, §54, 55; 2, с. 234–247; 11, §25; 10, §41–44].

Задача 8.4. Используя свойства матриц Паули (1.8.6), доказать тождество

$$(\vec{a}\vec{\sigma})(\vec{b}\vec{\sigma}) = (\vec{a}\vec{b})I + i(\vec{a}\times\vec{b})\vec{\sigma}. \tag{1.8.9}$$

Здесь \vec{a} , \vec{b} – произвольные числовые векторы.

Задача 8.5. Используя результат (1.8.9) задачи 8.4, показать, что для любой аналитической функции f

$$f(\vec{n}\vec{\sigma}x) = \frac{1}{2} [f(x) + f(-x)]I + \frac{1}{2} [f(x) - f(-x)](\vec{n}\vec{\sigma}), \qquad (1.8.10)$$

где x — числовая переменная, \vec{n} — произвольный единичный вектор.

 $У \kappa a з a н u e$: использовать для функции f разложение в ряд Тейлора.

Задача 8.6. Пусть спиновое состояние имеет вид $\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, где $|\alpha|^2 + |\beta|^2 = 1$. Как изменится спинор ψ при повороте системы координат вокруг оси z на угол ϕ ? **Задача 8.7.** Пусть спиновое состояние имеет вид $\psi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Как изменится спинор ψ при повороте системы координат вокруг оси x: (a) на угол $\pi/2$; (б) на угол π ? **Задача 8.8.** Пусть спиновое состояние имеет вид $\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, где $|\alpha|^2 + |\beta|^2 = 1$. Найти преобразование поворота (ось \vec{n} и угол ϕ), в результате которого спинор примет вид $\psi' = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

8.3. Уравнение Паули, спин в магнитном поле.

С учетом спина уравнение Шредингера в электрическом и магнитном поле для электрона принимает вид (*уравнение Паули*)⁴

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[\frac{1}{2m} \left(\vec{p} + \frac{|e|}{c} \vec{A} \right)^2 I - |e| \, \varphi + \frac{|e|\hbar}{2mc} (\vec{\sigma} \vec{B}) \right] \Psi, \qquad (1.8.11)$$

где \vec{A} и $\vec{B} = \vec{\nabla} \times \vec{A}$ — вектор-потенциал и вектор индукции магнитного поля.

Отметим, что гиромагнитный фактор спина электрона $\hat{\vec{s}}$ равен $2\mu_B$: $\frac{|e|\hbar}{2mc}(\vec{\sigma}\vec{B}) = \frac{|e|\hbar}{mc}(\hat{\vec{s}}\vec{B}) = 2\mu_B(\hat{\vec{s}}\vec{B})$, т. е. оказывается в 2 раза больше гиромагнитного фактора μ_B , стоящего при операторе орбитального момента импульса $\hat{\vec{L}}$ в уравнении (1.8.2).

Литература. [7, §113; 11, §25].

Задача 8.9. Покоящийся электрон находится в постоянном магнитном поле $\vec{B} \parallel \vec{z}$. Найти зависимость волновой функции спина от времени. Рассмотреть также случай, когда магнитное поле зависит от времени: $\vec{B} = (0,0,B_Z(t))$.

⁴ Так же, как и в формуле (1.8.2), здесь явным образом учтен *отрицательный* знак заряда электрона.

Задача 8.10. Покоящийся электрон находится в переменном магнитном поле $\vec{B} = (B_{\perp} \cos \omega t, B_{\perp} \sin \omega t, B_0)$. Найти зависимость волновой функции спина от времени.

9. Сложение моментов, волновые функции

Рассмотрим изолированную квантовую систему, состоящую из двух *слабо* взаимодействующих подсистем с моментами импульса \hat{j}_1 и \hat{j}_2 , соответственно. При отсутствии внешних моментов сил полный момент системы $\hat{j}=\hat{j}_1+\hat{j}_2$ сохраняется, т. е. он является интегралом движения. Тогда коммутатор $[\hat{j},\hat{H}]=0$, и собственное состояние гамильтониана системы может быть выбрано как собственное состояние оператора \hat{j}^2 и оператора проекции суммарного момента \hat{j}_z на ось квантования z:

$$\hat{\vec{j}}^2 |j,m\rangle = j(j+1)|j,m\rangle, \qquad \hat{j}_z|j,m\rangle = m|j,m\rangle, \qquad (1.9.1)$$

где m = -j, ..., 0, ..., j.

Перечислим основные правила сложения моментов, известные как *вектор- ная модель*.

1. Абсолютное значение полного момента принимает одно из значений:

$$j = (j_1 + j_2), (j_1 + j_2 - 1), \dots, |j_1 - j_2|.$$
 (1.9.2)

2. Проекция полного момента есть сумма проекций каждой из двух подсистем

$$m = m_1 + m_2. (1.9.3)$$

В общем случае взаимодействие подсистем приводит к тому, что проекции m_1 и m_2 по отдельности не сохраняются и вектор состояния полной системы $|j,m\rangle$ есть суперпозиция всех тензорных произведений векторов состояний $|j_1,m_1\rangle$ и $|j_2,m_2\rangle$ подсистем с суммарной проекцией $m=m_1+m_2$:

$$|j,m\rangle = \sum_{m=m_1+m_2} C_{j_1m_1j_2m_2}^{jm} |j_1,m_1\rangle |j_2,m_2\rangle,$$
 (1.9.4)

где $C^{\,jm}_{\,j_1m_1\,j_2m_2}$ – коэффициенты Клебша–Гордана.

Опишем *стандартный алгоритм* их вычисления и построение всех возможных состояний $|j,m\rangle$.

1. Начнем с построения мультиплета состояний с *максимальным* полным моментом $j = j_1 + j_2$.

Состояние с *максимальной проекцией* момента $m = j = j_1 + j_2$ очевидно и единственно:

$$|j,j\rangle = |j_1,j_1\rangle|j_2,j_2\rangle.$$
 (1.9.5)

Для нахождения остальных состояний мультиплета можно воспользоваться *понижающим* оператором $\hat{j}_{-}=\hat{j}_{x}-\mathrm{i}\,\hat{j}_{y}$, действие которого на состояние $|j,m\rangle$ переводит его в состояние $|j,m-1\rangle$:

$$\hat{j}_{-}|j,m\rangle = \sqrt{(j-m+1)(j+m)}|j,m-1\rangle.$$
 (1.9.6)

Подействуем на левую часть уравнения (1.9.5) оператором \hat{j}_{-} , а на правую – эквивалентной суммой операторов $(\hat{j}_{1})_{-} + (\hat{j}_{2})_{-}$ (каждый из которых действует только на вектор состояния «своей» подсистемы):

$$\sqrt{2j} |j, j-1\rangle = \sqrt{2j_1} |j_1, j_1-1\rangle |j_2, j_2\rangle + \sqrt{2j_2} |j_1, j_1\rangle |j_2, j_2-1\rangle.$$

Поделив на коэффициент, возникший в левой части, получаем нормированный вектор состояния с m = j - 1:

$$|j, j-1\rangle = \sqrt{\frac{j_1}{j}} |j_1, j_1-1\rangle |j_2, j_2\rangle + \sqrt{\frac{j_2}{j}} |j_1, j_1\rangle |j_2, j_2-1\rangle.$$
 (1.9.7)

Повторяя данную операцию 2j-1 раз, построим последовательно все остальные векторы состояния для мультиплета $|j,m\rangle$ с m=j-2,...,-j.

2. Состояние следующего мультиплета $|j-1,m\rangle$ с его максимальной проекцией m=j-1 содержит, согласно уравнению (1.9.4) два слагаемых:

$$|j-1, j-1\rangle = a_1|j_1, j_1-1\rangle|j_2, j_2\rangle + a_2|j_1, j_1\rangle|j_2, j_2-1\rangle.$$

Для определения неизвестных a_1 и a_2 воспользуемся условием ортогональности состояния $|j-1,j-1\rangle$ к состоянию $|j,j-1\rangle$ из предыдущего мультиплета

$$\langle j, j-1 | j-1, j-1 \rangle = \sqrt{\frac{j_1}{j}} a_1 + \sqrt{\frac{j_2}{j}} a_2 = 0,$$

и условием нормировки $a_1^2+a_2^2=1$, откуда $a_1=\sqrt{j_2\ /\ j}$ и $a_2=-\sqrt{j_1\ /\ j}$, что дает

$$|j-1,j-1\rangle = \sqrt{\frac{j_2}{j}}|j_1,j_1-1\rangle|j_2,j_2\rangle - \sqrt{\frac{j_1}{j}}|j_1,j_1\rangle|j_2,j_2-1\rangle.$$
 (1.9.8)

Далее, повторяя действие понижающим оператором на полученный вектор состояния, строим остальные состояния и для этого мультиплета.

Аналогичным образом вычисляются все остальные мультиплеты: сначала строится состояние с максимальной для данного мультиплета проекцией m (с использованием его ортогональности состояниям с той же проекцией m для panee nocmpoehhbix мультиплетов), а затем с помощью понижающего оператора — все остальные состояния текущего мультиплета.

Литература: [13, с. 164–172; 11, §26].

Задача 9.1. Найти все возможные значения полного момента импульса и построить соответствующие мультиплеты квантовых состояний для системы из двух спинов с $s = \frac{1}{2}$.

Задача 9.2. Найти все возможные значения полного момента импульса и построить соответствующие мультиплеты квантовых состояний для электрона с орбитальным моментом импульса l и спином $s = \frac{1}{2}$.

Задача 9.3. Система состоит из двух подсистем с моментами импульса $j_1 = j_2 = 1$. Найти возможные значения полного момента и построить соответствующие мультиплеты квантовых состояний.

10. Тождественные частицы

В квантовой механике все частицы одного сорта: электроны, протоны, нейтроны, фотоны и прочие являются *тождественными*. Тождественные частицы делятся на два класса: *бозоны* и *фермионы*. Все известные бозоны имеют *целый* спин, фермионы — *полуцелый*. При перестановке двух тождественных бозонов волновая функция остается неизменной, при перестановке двух тождественных фермионов волновая функция *меняет знак*. Соответственно, для фермионов возникает принцип Паули: *в одном квантовом состоянии не может находиться два и более тождественных фермиона*. Для бозонов такого ограничения нет. *Литература*: [4, §46; 7, §61–63; 11, §29; 13, с. 427–435].

Задача 10.1. В состояниях с каким орбитальным моментом могут находиться два тождественных бозона со спином 0?

Задача 10.2. Два тождественных бозона со спином 1 находятся в состоянии с орбитальным моментом l. Какие значения полного спина допустимы для этой системы?

Задача 10.3. В состояниях с каким орбитальным моментом могут находиться два электрона?

11. Теория возмущений

11.1. Стационарное возмущение

Пусть гамильтониан \hat{H} квантовой системы *не зависит* явным образом от времени и может быть представлен в виде суммы двух слагаемых:

$$\hat{H} = \hat{H}^{(0)} + \hat{V}, \qquad (1.11.1)$$

где \hat{V} – малая добавка к гамильтониану $\hat{H}^{(0)}$, для которого известен *полный набор* собственных значений $E_n^{(0)}$ и образующий полный базис *набор собственных векторов* $|\psi_n^{(0)}\rangle$, удовлетворяющих стационарному уравнению Шредингера

$$E_n^{(0)} | \psi_n^{(0)} \rangle = \hat{H}^{(0)} | \psi_n^{(0)} \rangle$$
 (1.11.2)

Тогда, представляя собственные значения E_n и собственные векторы $|\psi_n\rangle$ полного гамильтониана \hat{H} в виде ряда по малому возмущению \hat{V} :

- $\bullet \quad E_n = \sum_{k=0} E_n^{(k)} ,$
- коэффициенты разложения $|\psi_n\rangle$ по базису собственных векторов невозмущенного гамильтониана $\hat{H}^{(0)}$: $\langle \psi_m^{(0)} | \psi_n \rangle = \sum_{k=0} c_{mn}^{(k)}$,

в первых двух порядках по возмущению \hat{V} имеем [7, §38]:

$$E_n \simeq E_n^{(0)} + E_n^{(1)} + E_n^{(2)}; \quad E_n^{(1)} = \langle \psi_n^{(0)} | \hat{V} | \psi_n^{(0)} \rangle, \quad E_n^{(2)} = \sum_{m \neq n} \frac{|\langle \psi_m^{(0)} | \hat{V} | \psi_n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}}. \tag{1.11.3}$$

Для коэффициентов разложения $c_{mn}^{(k)}$ также ограничимся первым порядком k=1:

$$c_{mn}^{(0)} = \delta_{mn}, \quad c_{mn}^{(1)} = (1 - \delta_{mn}) \frac{\langle \psi_m^{(0)} | \hat{V} | \psi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}};$$

$$|\psi_n\rangle \simeq |\psi_n^{(0)}\rangle + \sum_{m \neq n} \frac{\langle \psi_m^{(0)} | \hat{V} | \psi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} |\psi_m^{(0)}\rangle.$$
(1.11.4)

Условие применимости (1.11.3), (1.11.4) подразумевает, что полученные поправки остаются малыми, т. е.

$$|E_n^{(0)} - E_m^{(0)}| \gg |\langle \psi_m^{(0)} | \hat{V} | \psi_n^{(0)} \rangle|.$$
 (1.11.5)

Для вырожденных или близко расположенных уровней потребуются другие методы [7, §39; 1, §49, 50; 2, с. 214–220; 10, §30, 31] (см. также задачи 11.5 и 11.6). Литература: [7, §38, 39; 2, с. 210–220; 1, §47, 48; 11, §17; 13, с. 197–204; 10, §29–31].

Задача 11.1. Для гармонического осциллятора с невозмущенным гамильтонианом $\hat{H}^{(0)} = \frac{\hat{p}^2}{2m} + \frac{m\omega_0^2\hat{x}^2}{2}$ и возмущением $\hat{V} = \alpha\hat{x}$ найти поправки к энергии произвольного состояния $|n\rangle$.

Задача 11.2. В первом отличном от нуля порядке теории возмущений найти поправки к уровням гармонического осциллятора, вызванные ангармоническими добавками к потенциалу: (a) $\hat{V} = \beta x^3$; (б) $\hat{V} = \gamma x^4$.

Указание: решать задачи (11.1) и (11.2), используя операторы рождения и уничтожения, определенные в формуле (1.5.14).

Задача 11.3. Найти поправку к энергии основного состояния атома водорода, обусловленную релятивистской поправкой к кинетической энергии электрона:

$$\sqrt{p^2c^2+m^2c^4}\approx mc^2+\frac{p^2}{2m}-\frac{p^4}{8m^3c^2}; \quad \hat{V}=-\frac{\hat{p}^4}{8m^3c^2} \ .$$

Для водорода волновая функция основного состояния $\Psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi}} \exp(-\frac{r}{a_B})$.

Задача 11.4. Для атома водорода в основном состоянии найти энергию ΔE взаимодействия с внешним постоянным электрическим полем $\vec{\mathcal{E}}$ (эффект Штарка) и поляризуемость атома, определенную как $\alpha = -\frac{\partial^2 \Delta E}{\partial \mathcal{E}^2}$.

Задача 11.5. Для атома водорода в состоянии с n=2 найти энергию $\Delta E(\mathcal{E})$ взаимодействия с внешним постоянным электрическим полем $\vec{\mathcal{E}}$, учитывая разность энергий атома в состояниях 2S и 2P: $\Delta E_{SP} \equiv E_{2S} - E_{2P} \simeq 4,4 \cdot 10^{-6}$ эВ 5 (наличием спина электрона пренебречь). Как зависит ΔE от $\vec{\mathcal{E}}$?

Задача 11.6. Покоящийся электрон со спином $s=\frac{1}{2}$ помещен в постоянное магнитное поле $\vec{B}=(B_x,0,B_z)$, $B_z=B_0\gg B_x$. При неизменной величине поля B_x поле B_z медленно изменяют от значения $B_z=B_0$ до $B_z=-B_0$. Найти энергии и волновые функции стационарных состояний электрона в зависимости от величины поля B_z . Как изменится результат, если поле $B_x=0$?

Задача 11.7. Найти магнитный момент атома водорода (фактор Ланде) в состоянии 2P (n=2, l=1) при значениях полного момента j=1/2 и j=3/2.

Задача 11.8. Вычислить энергию спин-орбитального взаимодействия в атоме водорода в состоянии 2P.

Задача 11.9. Найти расщепление уровней атома водорода в состоянии 2P (n=2, l=1) в пределе слабого магнитного поля (эффект Зеемана) и в пределе сильного магнитного поля (эффект Пашена–Бака).

11.2. Возмущение, зависящее от времени

Рассмотрим нестационарное уравнение Шредингера

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle = (\hat{H}_0 + \hat{V}(t)) |\Psi(t)\rangle, \qquad (1.11.6)$$

где \hat{H}_0 – не зависящий от времени гамильтониан задачи с полным набором $\{\mid n\rangle\}$ решений стационарного уравнения Шредингера: $E_n\mid n\rangle=\hat{H}_0\mid n\rangle$, а $\hat{V}(t)$ – опера-

 $^{^{5}}$ Эта разность энергий известна как лэмбовский сдвиг, обнаруженный в 1947 г. У. Лэмбом и Р. Ризерфордом.

тор возмущения, зависящего от времени. Разлагая решение $|\Psi(t)\rangle$ по стационарным состояниям $|n(t)\rangle = \mathrm{e}^{-\mathrm{i}E_nt/\hbar}\,|n\rangle$:

$$|\Psi(t)\rangle = \sum_{n} a_n(t) e^{-iE_n t/\hbar} |n\rangle = \sum_{n} a_n(t) |n(t)\rangle, \qquad (1.11.7)$$

подставим его в уравнение (1.11.6). Умножая получившееся уравнение слева на бра-вектор $\langle m(t) |$, получим систему уравнений

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} a_m(t) = \sum_n V_{mn}(t) a_n(t) e^{i\omega_{mn}t}, \qquad (1.11.8)$$

где $\omega_{mn} = (E_m - E_n) \, / \, \hbar$ и матричный элемент $V_{mn}(t) = \langle m \, | \, \hat{V}(t) \, | \, n \rangle$.

Предположим, что в начальный момент $t = t_0$ система находится в состоянии $|i\rangle$, что соответствует начальному условию $a_{ni}(t_0) = \delta_{ni}$. Ограничиваясь в уравнении (1.11.8) для амплитуды перехода из начального состояния $|i\rangle$ в состояние $|m\rangle$ первым порядком по малому возмущению $\hat{V}(t)$, получим вероятность перехода

$$w_{mi}(t) = |a_{mi}(t)|^2 = \frac{1}{\hbar^2} \left| \int_{t_0}^{t} V_{mi}(t') e^{i\omega_{mn}t'} dt \right|^2.$$
 (1.11.9)

Для возмущения, действующего конечное время, вероятность перехода из начального состояния $|i\rangle$ при $t \to -\infty$ в конечное состояние $|f\rangle$ при $t \to \infty$ равна

$$w_{fi} = |a_{fi}|^2 = \frac{1}{\hbar^2} \left| \int_{-\infty}^{\infty} V_{fi}(t) e^{i\omega_{mn}t} dt \right|^2$$
 (1.11.10)

Если возмущение *остается конечным* в пределе $t \to \infty$, то необходимо учесть *изменения базиса стационарных состояний* под действием этого возмущения (ср. с формулой (1.11.4))

$$|n^{\infty}\rangle = |n\rangle - \sum_{m} \frac{V_{mn}(t \to \infty)}{E_{m} - E_{n}} |m\rangle. \tag{1.11.11}$$

В таком случае вероятность перехода из исходного состояния $|i\rangle$ старого базиса при $t \to -\infty$ в состояние $|f^\infty\rangle$ нового базиса $\{|n^\infty\rangle\}$ при $t \to \infty$ дается формулой

$$w_{fi} = |a_{fi}|^2 = \frac{1}{\hbar^2 \omega_{mn}^2} \left| \int_{-\infty}^{\infty} \frac{dV_{fi}(t)}{dt} e^{i\omega_{mn}t} dt \right|^2$$
 (1.11.12)

Литература: [7, §40, 41; 13, с. 237–240; 10, §33].

Задача 11.10. В начальный момент атом трития находится в основном состоянии n=1. В результате β -распада ядра трития заряд ядра мгновенно увеличивается на единицу: $e \rightarrow 2e$. Найти вероятность, что в образовавшемся ионе гелия электрон останется в основном состоянии.

Задача 11.11. В потенциале $U(x) = -G\delta(x)$ (константа G не зависит от x) в основном состоянии находится частица массы m. В момент t=0 константа G мгновенно увеличивается вдвое: $G \to 2G$. Найти вероятность «ионизации» системы (переход частицы в состояние с энергией E > 0).

Задача 11.12. На атом водорода, находящийся в основном состоянии n=1, действуют кратковременным импульсом электрического поля $\mathcal{E}(t) = \mathcal{E}_0 / (1 + t^2 / \tau^2)$. Найти вероятность перехода атома в состояние с n=2.

Задача 11.13. На гармонический осциллятор $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}$ действует зависящее от времени возмущение $\hat{V}(t) = \alpha\hat{x} \cdot \left(\arctan(t/\tau) - \pi/2\right)$. Найти вероятность перехода при $t \to \infty$ в состояние $|n \pm 1\rangle$, если при $t \to -\infty$ осциллятор находился в состоянии $|n\rangle$.

11.3. Переходы под воздействием периодического возмущения

В случае периодического возмущения $\hat{V}(t) = \hat{V}^0 e^{-i\omega t}$ для перехода из состояния $|i\rangle$ в состояния $|f\rangle$ непрерывного спектра, лежащие в интервале $(f, f + \mathrm{d}f)$, вероятность такого перехода в единицу времени равна (золотое правило Ферми):

$$d\dot{w}_{fi} = \frac{2\pi}{\hbar^2} |V_{fi}^0|^2 \delta(\omega_{fi} - \omega) dv_f, \qquad (1.11.13)$$

где $\mathrm{d} \mathrm{v}_f$ — число квантовых состояний, лежащих в интервале $(f,f+\mathrm{d} f)$.

Источником такого периодического возмущения может быть электромагнитная волна. В квантовом пределе вектор-потенциал, электрическое и магнитное поле монохроматической электромагнитной волны с частотой ω и волновым вектором \vec{k} описываются операторами

$$\hat{\vec{A}}_{\omega,\vec{k},\lambda}(\vec{r},t) = \sqrt{\frac{\hbar c^2}{\omega V}} \left(\vec{e}_{\lambda} \hat{a}_{\vec{k},\lambda} e^{i\vec{k}\vec{r} - \omega t} + \vec{e}_{\lambda}^* \hat{a}_{\vec{k},\lambda}^+ e^{-i\vec{k}\vec{r} + \omega t} \right),$$

$$\hat{\vec{\mathcal{E}}}_{\omega,\vec{k},\lambda}(\vec{r},t) = \sqrt{\frac{\hbar \omega}{V}} \left(\vec{e}_{\lambda} \hat{a}_{\vec{k},\lambda} e^{i\vec{k}\vec{r} - \omega t} - \vec{e}_{\lambda}^* \hat{a}_{\vec{k},\lambda}^+ e^{-i\vec{k}\vec{r} + \omega t} \right),$$

$$\hat{\vec{\mathcal{B}}}_{\omega,\vec{k},\lambda}(\vec{r},t) = \sqrt{\frac{\hbar \omega}{V}} \left([\vec{n} \times \vec{e}_{\lambda}] \hat{a}_{\vec{k},\lambda} e^{i\vec{k}\vec{r} - \omega t} - [\vec{n} \times \vec{e}_{\lambda}^*] \hat{a}_{\vec{k},\lambda}^+ e^{-i\vec{k}\vec{r} + \omega t} \right).$$
(1.11.14)

Здесь \vec{e}_{λ} , $(\lambda=1,2)$ – вектор поляризации волны: $\vec{e}_{\lambda} \perp \vec{k}$, $\vec{n} \equiv \vec{k}/|\vec{k}|$, V – нормировочный объем, операторы $\hat{a}_{\vec{k},\lambda}^+$, $\hat{a}_{\vec{k},\lambda}^-$ – описывают рождение и уничтожение квантов электромагнитного поля:

$$\hat{a}_{\vec{k},\lambda}^{+} \left| \dots, n_{\vec{k},\lambda}, \dots \right\rangle = \sqrt{n_{\vec{k},\lambda} + 1} \left| \dots, \left(n_{\vec{k},\lambda} + 1 \right), \dots \right\rangle,
\hat{a}_{\vec{k},\lambda} \left| \dots, n_{\vec{k},\lambda}, \dots \right\rangle = \sqrt{n_{\vec{k},\lambda}} \left| \dots, \left(n_{\vec{k},\lambda} - 1 \right), \dots \right\rangle,$$
(1.11.15)

где $|...,n_{\vec{k}},...\rangle$ – вектор состояния *квантованного* электромагнитного поля в представлении чисел заполнения.

Литература: [2, с. 427–438; 1,§80, 94; 11, §43, 44; 10, §34, 61–65].

Задача 11.14. Электрон находится в осцилляторном потенциале $U(z) = \frac{m\omega_0^2 z^2}{2}$ в квантовом состоянии $|n\rangle$. Найти вероятность в единицу времени радиационного электрического дипольного (E1) перехода в квантовое состояние $|n-1\rangle$.

Задача 11.15. Вычислить вероятность в единицу времени электрического дипольного (E1) перехода в атоме водорода из состояния 2P в состояние 1S.

Задача 11.16. Покоящийся электрон находится во внешнем магнитном поле $\vec{B} = (0,0,B_z)$. Вычислить вероятность в единицу времени радиационного магнитного дипольного (M1) перехода из состояния $s_z = \frac{1}{2}$ в состояние $s_z = -\frac{1}{2}$.

11.4. Рассеяние частиц на потенциале: приближение Борна.

Пусть имеется поток квантовых частиц с импульсом $\vec{p}=\hbar\vec{k}\equiv\hbar(0,0,k)$, описываемых плоской волной $\psi_{\rm пад}={\rm e}^{{\rm i}kz}$. Взаимодействие с рассеивающим центром $U(\vec{r})$ приводит к появлению расходящейся рассеянной волны $\psi_{\rm pac}$, и суммарная волна $\psi^{(+)}=\psi_{\rm пад}+\psi_{\rm pac}$ должна удовлетворять уравнению Шредингера:

$$\left(-\frac{\hbar^2}{2m}\Delta + U(\vec{r})\right)\psi^{(+)} = E\psi^{(+)},$$
 (1.11.16)

где $E = \frac{\hat{p}^2}{2m} = \frac{\hbar^2 k^2}{2m}$ — энергия, m — масса падающих частиц. Для построения решения удобно рассмотреть эквивалентное интегральное уравнение

$$\psi^{(+)}(\vec{r}) = e^{ikz} + \frac{2m}{\hbar^2} \int d^3r' G_+(\vec{r} - \vec{r}') U(\vec{r}') \psi^{(+)}(\vec{r}'), \qquad (1.11.17)$$

где функция Грина $G_{\pm}(\vec{r}) = -\frac{1}{4\pi} \frac{\exp(\pm \mathrm{i} k r)}{r}$ удовлетворяет $(\Delta + k^2)G_{\pm}(\vec{r}) = \delta(\vec{r})$.

В рамках задачи о рассеянии нас интересует поведение $\psi^{(+)}(\vec{r})$ на больших расстояниях от рассеивающего центра: $|\vec{r}| \gg a$, где a – размер области действия потенциала $U(\vec{r})$. В этом пределе $\psi^{(+)}(\vec{r}) \approx \mathrm{e}^{\mathrm{i}kz} + f(\vec{k},\vec{k}') \frac{\mathrm{e}^{\mathrm{i}kr}}{r}$, где $f(\vec{k},\vec{k}')$ – амплитуда рассеяния, удовлетворяющая уравнению

$$f(\vec{k}, \vec{k}') = -\frac{m}{2\pi\hbar^2} \int d^3 r' e^{-i\vec{k}'\vec{r}'} U(\vec{r}') \psi^{(+)}(\vec{r}'). \qquad (1.11.18)$$

Предполагая $U(\vec{r})$ достаточно малым и пренебрегая вкладом рассеянной волны в подынтегральном выражении, получим формулу Борна (М. Борн, 1926) для амплитуды рассеяния $f(\vec{k}, \vec{k}')$ в линейном по $U(\vec{r})$ приближении:

$$f(\vec{q}) = -\frac{m}{2\pi\hbar^2} \int d^3 r e^{-i\vec{q}\cdot\vec{r}} U(\vec{r}) = -\frac{m}{2\pi\hbar^2} U_{\vec{q}}, \qquad (1.11.19)$$

где $\vec{q} = \vec{k}' - \vec{k}$ — передача импульса, связанная с углом рассеяния θ соотношением $q = |\vec{q}| = 2k \sin \frac{\theta}{2}$. Дифференциальное и полное сечение рассеяния выражается через амплитуду $f(\vec{q})$ формулами:

$$\frac{d\sigma}{d\Omega} = \left| f(\vec{q}) \right|^2, \qquad \sigma = \int \left| f(\vec{q}) \right|^2 d\Omega. \tag{1.11.20}$$

Условия применимости приближения Борна:

(a) для случая medленных частиц, при $qa \ll 1$, где a — размер области рассеиваюшего потенциала $U(\vec{r})$:

$$|U(a)| \ll \frac{\hbar^2}{ma^2} \tag{1.11.21}$$

(здесь потенциальная энергия мала по сравнению с энергией частицы, локализованной на размере a).

(б) для быстрых частиц:

$$\frac{a|U(a)|}{\hbar v} \ll 1 \tag{1.11.22}$$

(здесь потенциальная энергия U(a) мала по сравнению с неопределенностью кинетической энергии $\Delta E \sim \hbar / \Delta t$ за время пролета частицы через область взаимодействия размера a, $\Delta t \sim a/v$).

Литература. [1, §106, 108; 7, §126; 2, с. 342–353; 11, §20, 21; 10, §66–68].

Задача 11.17. Найти в приближении Борна дифференциальное и полное сечение рассеяния на потенциале $U(\vec{r}) = G \, \delta(\vec{r})$, где G — постоянная.

Задача 11.18. Найти дифференциальное сечение рассеяния на потенциале $U(\vec{r}) = G\left(\delta(\vec{r} + \vec{a}) + \delta(\vec{r} - \vec{a})\right)$, где G — постоянная, а направление вектора \vec{a} случайно. Исследовать зависимость сечения при $qa \ll 1$ и $qa \gg 1$, где $\vec{q} = \vec{k}' - \vec{k}$.

Задача 11.19. Вычислить в борновском приближении дифференциальное сечение рассеяния быстрых электронов на протоне: $U(r) = -\frac{e^2}{r}$.

Задача 11.20. Вычислить сечение рассеяния быстрых электронов на атоме водорода в основном состоянии.

2. Решения задач и ответы

1. Квантовая природа микромира. Масштабы квантовых явлений и простейшие оценки

1.1. Атом водорода описывается тремя размерными параметрами: массой электрона m_e , зарядом e и постоянной Планка \hbar (ядро считаем неподвижным, так как $m_e \ll m_p$). Размерность постоянной Планка $[\hbar] = [$ энергия $] \cdot [$ время], размерность $[e^2] = [$ энергия $] \cdot [$ расстояние], откуда комбинация размерности скорости $v = e^2/\hbar$ задает соответствующий масштаб. Так как безразмерная постоянная тонкой структуры $\alpha \equiv e^2/\hbar c \approx 1/137$, где c — скорость света, получаем $v = \alpha c$.

Далее, комбинацию размерности энергии легко построить, как $E_{\rm h}=m_ev^2=m_ee^4/\hbar^2=27,2$ эВ. Она известна как *атомная единица энергии Хар-три* (Д. Хартри, 1928). Наконец, отношение квадрата заряда e^2 к энергии $E_{\rm h}$, имеющее размерность длины, определяет так называемый *боровский радиус*: $a_B=\hbar^2/m_ee^2$.

Энергия основного состояния атома водорода *отрицательна*, и точный результат содержит множитель 1/2: $E = -E_h / 2 = -Ry$, где Ry = 13,6 эВ называется *постоянной Ридберга*.

- **1.2.** Энергия осциллятора равна $E = m\omega^2 A^2 / 2$, дискретность спектра $\Delta E = \hbar \omega$. В макроскопическом случае E = 0.5 эрг, $\Delta E = 1.05 \cdot 10^{-27}$ эрг, $\Delta E / E = 2.1 \cdot 10^{-27} \ll 1$; в микроскопическом случае $E = 2.7 \cdot 10^{-11}$ эрг, $\Delta E = 5.25 \cdot 10^{-11}$ эрг, и $\Delta E / E \sim 1$.
- **1.3.** Энергия фотона $E = 2\pi\hbar c / \lambda = A/\lambda$, где $A = 2\pi\hbar c = 1,24\cdot 10^{-6}$ эВ·м, определяется энергией *рекомбинации* пары частица—дырка, равной *ширине запрещенной зоны* между валентной зоной и зоной проводимости. Эта же ширина определяет

пороговое напряжение для протекания тока через светодиод в *прямом* направлении: $V = E/e = (A/e)/\lambda$, где e- заряд электрона, и $(A/e) = 1,24 \cdot 10^{-6} \; \mathrm{B\cdot m}$. Для *красного* светодиода ($\lambda = 750 \; \mathrm{hm}$) $V = 1,65 \; \mathrm{B}$, для *синего* ($\lambda = 450 \; \mathrm{hm}$) $V = 2,75 \; \mathrm{B}$.

1.4. При движении по круговой орбите радиуса r ускорение электрона определяется силой кулоновского притяжения $a = (e/r)^2/m$. Подставляя ускорение в формулу для интенсивности дипольного излучения [15, §67], имеем:

$$I = \frac{2e^2}{3c^3}a^2 = \frac{2e^2}{3c^3} \left(\frac{e^2}{mr^2}\right)^2.$$

Оценивая *характерное время падения* электрона на ядро как отношение энергии атома $E = -e^2/2r$ к интенсивности излучения I, получим

$$\tau \sim \frac{|E|}{I} = \left(\frac{e^2}{2r}\right) / \left(\frac{2e^2}{3c^3} \left(\frac{e^2}{mr^2}\right)^2\right) = \frac{3}{4} \left(\frac{r}{r_e}\right)^2 \frac{r}{c}.$$

Здесь $r_e = e^2/mc^2 = 2,818 \cdot 10^{-13}$ см — так называемы *классический радиус* электрона. Подставив в качестве начального радиуса $r = a_B = 10^{-8}$ см, получим $\tau = 4,7 \cdot 10^{-11}$ с.

1.5. Запишем 4-вектор энергии-импульса фотона до рассеяния $k \equiv (\hbar\omega/c, \hbar\omega\vec{n}/c)$ и после $k' \equiv (\hbar\omega'/c, \hbar\omega'\vec{n}'/c)$, где \vec{n} и \vec{n}' – единичные векторы в направлении падающего и рассеянного фотона. Далее, 4-вектор энергии-импульса до рассеяния (покоящегося) электрона равен $p \equiv (mc^2, 0, 0, 0)$, а после рассеяния $p' \equiv (E/c, \gamma m\vec{v})$, где \vec{v} – скорость электрона после рассеяния и $\gamma = (1 - (v/c)^2)^{-1/2}$ – его релятивистский фактор. Записывая закон сохранения энергии-импульса в 4-мерном виде как p - p' = k' - k и возведя обе части в квадрат, имеем

$$(p-p')^2 = 2m^2c^2 - 2mE = (k'-k)^2 = -2\frac{\hbar^2\omega\omega'}{c^2}(1-\cos\theta),$$

где использовано, что $p^2=(p')^2=m^2c^2$, $k^2=(k')^2=0$, $(\vec{n}\vec{n}')=\cos\theta$. Подставив E из закона сохранения энергии $mc^2+\hbar\omega=E+\hbar\omega'$ и решая получившееся уравнение относительно ω' , приходим к ответу $\omega'=\omega/[1+(\hbar\omega/mc^2)(1-\cos\theta)]$.

1.6. Для круговой орбиты электрона момент импульса равен M=mvr, где r- радиус орбиты, а mv- его импульс. Из баланса центробежной силы и силы притяжения электрона к ядру $M^2/mr^3=e^2/r^2$ выразим радиус орбиты через момент импульса электрона: $r=M^2/me^2$. Подставляя для момента импульса дискретные значения $M=n\hbar$, получим для радиуса орбиты $r_n=\hbar^2 n^2/me^2$, откуда формула для дискретного спектра уровней атома водорода примет вид

$$E_n = \frac{M^2}{2mr_n^2} - \frac{e^2}{r_n} = -\frac{1}{2} \frac{me^4}{\hbar^2 n^2} = -\frac{\text{Ry}}{n^2}.$$

Отметим, что в рамках такой модели n = 1, 2, 3, ..., так как при n = 0 электрон падает на ядро. Соответственно, во всех состояниях магнитный момент атома оказывается *отмичен от нуля*, что противоречит эксперименту.

2. Волны де Бройля. Принцип суперпозиции. Волновые пакеты. Соотношение неопределенностей Гейзенберга.

- 2.1. Длина волны частицы с энергией 1 эВ:
 - (a) фотона $\lambda = 2\pi/k = 2\pi\hbar c/E = 1,24 \cdot 10^{-6}$ м = 1,24 μ ;
 - (б) электрона $\lambda = 2\pi\hbar/\sqrt{2mE} = 1,23 \cdot 10^{-9} \text{ м} = 1,23 \text{ нм};$
 - (в) нейтрона $\lambda = 2\pi\hbar / \sqrt{2mE} = 2.8 \cdot 10^{-11} \text{ м} = 0.028 \text{ нм}.$
- **2.2** Длина волны де Бройля $\lambda = 2\pi\hbar/p$, где $p \sim \sqrt{2mk_BT}$ тепловой импульс атома гелия, m его масса, T температура, k_B постоянная Больцмана. Приравнивая длину волны к среднему расстоянию между атомами $\lambda \sim a = (m/\rho)^{1/3}$, получим $T \sim 2\pi^2\hbar^2\rho^{2/3}m^{-5/3}/k_B \approx 16$ °K.
- **2.3.** (а) Разлагая $\Psi(x,t=0)$ по плоским волнам $\psi_p(x) = (1/2\pi\hbar)^{1/2} \mathrm{e}^{\mathrm{i}px/\hbar}$, получим амплитуду вероятности распределения по импульсам:

$$a(p) = \int dx \, \psi_p^*(x) \, \Psi(x, t = 0) = \int dx \, \frac{1}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}px} \frac{1}{(2\pi a_0^2)^{1/4}} e^{-\frac{(x-x_0)^2}{4a_0^2} + i\lambda x} =$$

$$= \left(\frac{2a_0^2}{\pi\hbar^2}\right)^{1/4} e^{-\frac{i}{\hbar}(p-\hbar\lambda)x_0 - \frac{a_0^2}{\hbar^2}(p-\hbar\lambda)^2}.$$

Распределение вероятности по импульсам

$$w(p) = |a(p)|^2 = \left(\frac{2a_0^2}{\pi\hbar^2}\right)^{1/2} e^{-\frac{2a_0^2}{\hbar^2}(p-\hbar\lambda)^2} = \left(\frac{2a_0^2}{\pi\hbar^2}\right)^{1/2} e^{-\frac{2a_0^2}{\hbar^2}(p-p_0)^2} \quad \text{(где } p_0 \equiv \hbar\lambda\text{)}$$

от времени не зависит, так как в случае *свободного* движения частицы её импульс сохраняется. Средний импульс $\langle p \rangle = \int dp \ p \cdot w(p) = \hbar \lambda$ отвечает максимуму распределения w(p) при $p = p_0 \equiv \hbar \lambda$, ширина распределения

$$\langle (p - \langle p \rangle)^2 \rangle = \int dp (p - \hbar \lambda)^2 \cdot w(p) = (\hbar / 2a_0)^2.$$

(б) При t > 0 каждая из волн $\psi_p(x)$ домножается на свой фазовый множитель $e^{-iE(p)t/\hbar} = e^{-ip^2t/2m\hbar}$. Собирая обратно волновой пакет с учетом этого множителя, получим волновую функцию в последующие моменты времени:

$$\begin{split} \Psi(x,t) &= \int dp \ a(p) \ \psi_p(x) \ \mathrm{e}^{-\mathrm{i} p^2 t/2m\hbar} = \\ &= \int dp \left(\frac{2a_0^2}{\pi\hbar^2}\right)^{1/4} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}(p-p_0)x_0 - \frac{a_0^2}{\hbar^2}(p-p_0)^2} \frac{1}{\sqrt{2\pi\hbar}} \mathrm{e}^{\frac{\mathrm{i}}{\hbar}px - \frac{\mathrm{i} p^2 t}{2m\hbar}} = \\ &= \frac{a_0^{1/2}}{(2\pi)^{1/4}(a_0^2 + \mathrm{i}\hbar t/2m)^{1/2}} \exp\left\{-\frac{(x-x_0-tp_0/m)^2}{4a_0^2\left(1+t^2\hbar^2/4m^2a_0^4\right)}\left(1 - \frac{\mathrm{i}\hbar t}{8ma_0^2}\right) + \frac{\mathrm{i} p_0 x}{\hbar} - \frac{\mathrm{i} p_0^2 t}{2m\hbar}\right\}. \end{split}$$

(в) Из распределения вероятности

$$w(x,t) = |\Psi(x,t)|^2 = \frac{1}{(2\pi)^{1/2} a_0 (1 + \hbar^2 t^2 / 4m^2 a_0^4)^{1/2}} \exp \left\{ -\frac{(x - x_0 - tp_0 / m)^2}{2a_0^2 (1 + t^2 \hbar^2 / 4m^2 a_0^4)} \right\}$$

видно, что центр пакета, находящийся в точке $x_c(t) = x_0 + (p_0/m)t$, движется с постоянной скоростью $v = p_0/m$.

(г) Из распределения вероятности также легко найти, что среднеквадратичная ширина пакета равна $\Delta x = \left(\left< (x - \left< x \right>)^2 \right> \right) = a_0 (1 + \hbar^2 t^2 / 4 m^2 a_0^4)^{1/2}$. При $t \gg \hbar / E_{\text{лок}}$,

где $E_{\text{лок}} \equiv \hbar^2 / 2ma_0^2$ – энергия локализации частицы на размере a_0 , ширина растет линейно со временем: $\Delta x \propto t$.

2.4. Энергия гармонического осциллятора: $E = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$. Из симметрии системы по отношению к отражению $x \to (-x)$ следует, что $\langle x \rangle = 0$ и $\langle p \rangle = 0$.

Оценивая неопределенность координаты частицы $\Delta x \sim l$, где l — характерный размер квантового состояния, и в силу соотношения Гейзенберга неопределенность импульса частицы $\Delta p \gtrsim \hbar / \Delta x \sim \hbar / l$, получим *оценку снизу* для энергии как функции параметра l:

$$E(l) \sim \frac{(\Delta p)^2}{2m} + \frac{m\omega^2(\Delta x)^2}{2} \sim \frac{\hbar^2}{2ml^2} + \frac{m\omega^2 l^2}{2}$$
 (2.2.1)

Энергия наинизшего — *основного* квантового состояния находится из условия *минимума* E(l): $\left(\frac{\mathrm{d}}{\mathrm{d}l}E(l)\right)_{l=l_{\min}}=0$, откуда $l_{\min}=\left(\frac{\hbar}{m\omega}\right)^{1/2}$ и энергия основного состояния $E_0\sim E(l_{\min})=\hbar\omega$. (Отметим, что точное *решение* задачи содержит дополнительный множитель 1/2.)

- **2.5.** Методом, аналогичным использованному в задаче 2.4, получим $E_0 \sim \frac{3(\alpha\hbar)^{2/3}}{2m^{1/3}}$.
- **2.6.** Полная энергия квантовой частицы есть сумма средней кинетической и потенциальной энергии: $E = \langle K \rangle + \langle U(x) \rangle$. Как и в задаче 2.4, оценим среднюю кинетическую энергию исходя из размера l квантового состояния: $\langle K \rangle \sim \hbar^2 / 2ml^2$.

Оценка же средней *потенциальной* энергии зависит от глубины ямы: (a) в *глубокой* яме ($\langle K \rangle \ll U_0$) естественно ожидать, что волновая функция практически полностью локализована внутри ямы: $l \sim a$, и в этом случае $\langle U(x) \rangle = -U_0$. Вместе с оценкой для кинетической энергии это дает для энергии состояния $E \sim \hbar^2/2ma^2 - U_0$;

(б) в мелкой яме размер квантового состояния l может значительно превышать размер ямы a. В этом случае $\langle U(x) \rangle = -U_0 \cdot w_U + 0 \cdot w_0 \sim -U_0 \cdot (a/l)$, где $w_U \sim (a/l)$ и $w_0 \equiv (1-w_U)$ — вероятность застать частицу соответственно внутри и вне ямы. Полная энергия в таком случае $E(l) \sim \hbar^2 / 2ml^2 - U_0 \cdot (a/l)$, и минимизация E(l)

дает $l = \hbar^2 / mU_0 a$, откуда $E \sim m(U_0 a)^2 / 2\hbar^2$. Отсюда следует, что в *одномерном случае* связанное состояние возникает в любой, сколь угодно мелкой яме!

3. Операторы, коммутаторы операторов

3.1. (a) $[\hat{x}, \hat{K}] = \frac{1}{2m} [\hat{x}, \hat{p}^2] = \frac{1}{2m} (\hat{p}[\hat{x}, \hat{p}] + [\hat{x}, \hat{p}]\hat{p}) = \frac{\mathrm{i}\hbar\hat{p}}{m}$, где использовано тождество $[\hat{A}, \hat{B}\hat{C}] = \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C}$.

(б) Представляя в виде ряда Тейлора $U(\hat{x}) = \sum_{n=0}^{\infty} \frac{U^{(n)}(0)\hat{x}^n}{n!}$, запишем искомый ком-

мутатор в виде ряда: $[\hat{p},\hat{U}(\hat{x})] = \sum_{n=0}^{\infty} \frac{U^{(n)}(0)}{n!} [\hat{p},\hat{x}^n]$. Вычислим коммутатор $[\hat{p},\hat{x}^n]$,

представив его в виде суммы двух слагаемых: $[\hat{p},\hat{x}^n] = \hat{p}\hat{x}^n - \hat{x}^n\hat{p}$. В первом слагаемом переставим оператор \hat{p} последовательно с n операторами \hat{x} , стоящими справа от него. На $\kappa a \varkappa c \partial o m$ шаге, при смещении оператора \hat{p} на одну позицию вправо, ввиду перестановочного соотношения $\hat{p}\hat{x} = \hat{x}\hat{p} - \mathrm{i}\hbar$ возникнет дополнительное слагаемое $-\mathrm{i}\hbar\hat{x}^{n-1}$, и в результате n шагов мы фактически получим $\hat{p}\hat{x}^n = \hat{x}^n\hat{p} - \mathrm{i}n\hbar\hat{x}^{n-1}$, откуда $[\hat{p},\hat{x}^n] = \hat{p}\hat{x}^n - \hat{x}^n\hat{p} = \hat{x}^n\hat{p} - \mathrm{i}n\hat{x}^{n-1} - \hat{x}^n\hat{p} = -\mathrm{i}n\hat{x}^{n-1}$.

Подставляя этот результат в полученный выше ряд, имеем

$$[\hat{p}, \hat{U}(\hat{x})] = \sum_{n=0}^{\infty} \frac{U^{(n)}(0)}{n!} [\hat{p}, \hat{x}^n] = -i\hbar \sum_{n=0}^{\infty} \frac{U^{(n)}(0)}{(n-1)!} \hat{x}^{n-1} =$$

$$= -i\hbar \sum_{k=0}^{\infty} \frac{U^{(k+1)}(0)}{k!} \hat{x}^k = -i\hbar \hat{U}^{(1)}(\hat{x}).$$
(2.3.1)

(B)
$$[\hat{L}_i, r_j] = \frac{1}{\hbar} \varepsilon_{ikl} r_k [\hat{p}_l, r_j] = \frac{1}{\hbar} \varepsilon_{ikl} r_k (-i\hbar \delta_{lj}) = i \varepsilon_{ijk} r_k;$$

$$[\hat{L}_i,\hat{p}_j] = \frac{1}{\hbar} \epsilon_{ikl} [r_k,\hat{p}_j] \hat{p}_l = \frac{1}{\hbar} \epsilon_{ikl} \hat{p}_l (\mathrm{i}\hbar \delta_{kj}) = \mathrm{i} \epsilon_{ijl} \hat{p}_l;$$

$$[\hat{L}_x, \hat{L}_y] = \frac{1}{\hbar} [\hat{L}_x, r_z \hat{p}_x - r_x \hat{p}_z] = -i r_y \hat{p}_x + i r_x \hat{p}_y = i \hat{L}_z.$$

$$(\Gamma) \; [\hat{L}_i, \hat{K}] = \frac{1}{2m} (\hat{p}_j [\hat{L}_i, \hat{p}_j] + [\hat{L}_i, \hat{p}_j] \hat{p}_j) = \frac{1}{2m} \mathrm{i} \varepsilon_{ijl} (\hat{p}_j \hat{p}_l + \hat{p}_l \hat{p}_j) = 0 \; ;$$

$$[\hat{L}_i, U(r)] = \frac{1}{\hbar} \varepsilon_{ijk} r_j [\hat{p}_k, U(r)] = \varepsilon_{ijk} r_j \left(-i \frac{\partial}{\partial r_k} U(r) \right) = -i \varepsilon_{ijk} r_j r_k \frac{1}{r} U'(r) = 0,$$

так как свертка *антисимметричного* тензора ε_{ijk} с *симметричными* тензорами $\hat{p}_{j}\hat{p}_{l}$, и $r_{j}r_{k}$ равна нулю.

3.2. Представляя $\exp(i\hat{p}a/\hbar)$ в виде ряда Тейлора, запишем

$$\exp\left(i\frac{\hat{p}a}{\hbar}\right)\psi(x) = \sum_{n=0}^{\infty} \frac{i^n \hat{p}^n a^n}{\hbar^n n!} \psi(x) = \sum_{n=0}^{\infty} \frac{a^n}{n!} \left(\frac{i}{\hbar}\right)^n \left(-i\hbar \frac{d}{dx}\right)^n \psi(x) =$$

$$= \sum_{n=0}^{\infty} \frac{a^n}{n!} \psi^{(n)}(x) = \psi(x+a),$$

что и требовалось доказать.

3.3 Докажем, что матрица $U = \langle p \mid x \rangle$ унитарна, умножая её на эрмитово сопряженную матрицу $U^+ = (\langle p \mid x \rangle)^+ = \langle x \mid p \rangle$:

$$UU^{+} = \sum_{x} \langle p | x \rangle \langle x | p' \rangle = \langle p | p' \rangle = \delta_{pp'},$$

где использовано условие *полноты* базиса $\{|x\rangle\}$: $\sum_{x} |x\rangle\langle x| = 1$ и *ортонормирован- ности* состояний $|p\rangle$.

3.4. Пусть \hat{a} и \hat{b} – эрмитовы операторы пары наблюдаемых физических величин, причем их коммутатор отличен от нуля: $[\hat{a},\hat{b}]=\mathrm{i}\hat{C}\neq 0$. Докажем, что при усреднении по любому квантовому состоянию $|\Phi\rangle$ выполняется неравенство

$$\langle (\hat{a} - \langle \hat{a} \rangle)^2 \rangle \langle (\hat{b} - \langle \hat{b} \rangle)^2 \rangle \ge \frac{1}{4} \langle \hat{C} \rangle^2$$
.

Доказательство. Введем $\hat{A} \equiv \hat{a} - \langle \hat{a} \rangle$ и $\hat{B} \equiv \hat{b} - \langle \hat{b} \rangle$, так что $\langle \hat{A} \rangle = \langle \hat{B} \rangle = 0$. Далее построим вектор $|\Psi\rangle = (\hat{A} + \mathrm{i}\alpha\hat{B})|\Phi\rangle$, где α — вещественное число. Используя очевидное неравенство $\langle \Psi | \Psi \rangle \geq 0$, с учетом эрмитовости операторов \hat{A} и \hat{B} запишем

$$0 \le \langle \Phi | (\hat{A} - i\alpha\hat{B})(\hat{A} + i\alpha\hat{B}) | \Phi \rangle = \langle \Phi | \hat{A}^2 + \alpha^2\hat{B}^2 + i\alpha(\hat{A}\hat{B} - \hat{B}\hat{A}) | \Phi \rangle =$$

$$= \langle \Phi | \hat{A}^2 | \Phi \rangle + \alpha^2 \langle \Phi | \hat{B}^2 | \Phi \rangle - \alpha \langle \Phi | \hat{C} | \Phi \rangle = \langle \hat{A}^2 \rangle + \alpha^2 \langle \hat{B}^2 \rangle - \alpha \langle \hat{C} \rangle$$

Квадратичная форма по α положительно определена при условии, что ее дискриминант $4\langle \hat{A}^2\rangle\langle \hat{B}^2\rangle - \langle \hat{C}\rangle^2 \ge 0$, откуда и следует требуемое неравенство.

3.5. (a)
$$\hat{a} = \hat{p}$$
 и $\hat{b} = \hat{x}$. Тогда і $\hat{C} = [\hat{p}, \hat{x}] = -i\hbar$, откуда $\langle (\Delta p)^2 \rangle \langle (\Delta x)^2 \rangle \ge \hbar^2 / 4$.

(б)
$$\hat{a} = \hat{K} = \frac{\hat{p}^2}{2m}$$
 и $\hat{b} = \hat{U} = \frac{m\omega^2\hat{x}^2}{2}$. Вычислим коммутатор
$$\hat{i}\hat{C} = [\hat{K}, \hat{U}] = \frac{\omega^2}{4} [\hat{p}^2, \hat{x}^2] = \frac{\hat{i}\hbar\omega^2}{2} (\hat{p}\hat{x} + \hat{x}\hat{p}) , \text{ откуда } \langle (\Delta K)^2 \rangle \langle (\Delta U)^2 \rangle \geq \frac{\hbar^2\omega^4}{16} \langle \hat{p}\hat{x} + \hat{x}\hat{p} \rangle^2 .$$

4. Квантовая динамика, уравнение Шредингера

4.1. Для свободной частицы $(U(x) \equiv U_0 = \text{const})$ уравнение Шредингера имеет вид

$$\left(-\frac{\hbar^2}{2m}\Delta + U_0\right)\psi = E\psi, \quad \psi'' = -k^2\psi, \quad k = \sqrt{\frac{2m}{\hbar^2}(E - U_0)} ,$$

откуда общее решение $\psi = (c_1 e^{ikx} + c_2 e^{-ikx}) e^{-iEt/\hbar}$.

4.2. Используя определение плотности потока вероятности (1.4.3), для $\psi(x,t) = \frac{1}{(2\pi\hbar)^{1/2}} \mathrm{e}^{\mathrm{i}(px-Et)/\hbar} \text{ получим } \vec{j} = -\frac{\mathrm{i}\hbar}{2m} \{\psi^* \vec{\nabla} \psi - (\vec{\nabla} \psi^*) \psi\} = \frac{\vec{p}}{m} \frac{1}{2\pi\hbar}.$

4.3. Для волнового пакета $\Psi(x,t=0) = \frac{1}{(2\pi a_0^2)^{1/4}} \exp\left(-\frac{(x-x_0)^2}{4a_0^2} + \frac{\mathrm{i}p_0\ x}{\hbar}\right)$ поток плотности вероятности равен $j = \frac{1}{(2\pi a_0^2)^{1/2}} \exp\left(-\frac{(x-x_0)^2}{2a_0^2}\right) \frac{p_0}{m}$.

4.4. Для оператора скорости имеем

$$\hat{v} = \frac{\mathrm{d}}{\mathrm{d}t} x = \frac{\mathrm{i}}{\hbar} \left[\hat{H}, \hat{x} \right] = \frac{\mathrm{i}}{\hbar} \left[\frac{\hat{p}^2}{2m} + U(\hat{x}), \hat{x} \right] = \frac{\mathrm{i}}{2m\hbar} \left(\hat{p} \left[\hat{p}, \hat{x} \right] + \left[\hat{p}, \hat{x} \right] \hat{p} \right) = \frac{\hat{p}}{m},$$

для оператора ускорения, используя результат (2.3.1) задачи 3.1(б), получим:

$$\hat{a} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \hat{x} = \frac{\mathrm{d}}{\mathrm{d}t} \hat{v} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\hat{p}}{m} = \frac{\mathrm{i}}{\hbar m} \left[\hat{H}, \hat{p} \right] = \frac{\mathrm{i}}{\hbar m} \left[U(\hat{x}), \hat{p} \right] = -\frac{1}{m} U'(\hat{x}).$$

4.5. Для оператора скорости имеем:

$$\hat{\vec{v}} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{r} = \frac{\mathrm{i}}{\hbar} \left[\hat{H}, \vec{r} \right] = \frac{1}{m} \left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r}, t) \right).$$

Для оператора ускорения $\hat{\vec{a}}$ в соответствии с формулой (1.4.4) возникают два слагаемых

$$\hat{\vec{a}} = \frac{d^2}{dt^2}\vec{r} = \frac{d}{dt}\hat{\vec{v}} = \frac{1}{m}\frac{\partial}{\partial t}\left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r},t)\right) + \frac{i}{\hbar m}\left[\hat{H},\left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r},t)\right)\right].$$

В первом слагаемом явным образом от времени t зависит лишь вектор-потенциал $\vec{A}(\vec{r},t)$, откуда: $\frac{1}{m}\frac{\partial}{\partial t}\left(\hat{\vec{p}}-\frac{e}{c}\vec{A}(\vec{r},t)\right) = -\frac{1}{m}\frac{e}{c}\frac{\partial}{\partial t}\vec{A}(\vec{r},t)$.

Для второго слагаемого имеем:

$$\begin{split} &\frac{\mathrm{i}}{\hbar m}[\hat{H}, \left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r}, t)\right)_i] = \\ &= \frac{\mathrm{i}}{\hbar m} \left\{ \frac{1}{2m} \left[\left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r}, t)\right)^2, \left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r}, t)\right) \right] + \left[e\phi(\vec{r}, t), \left(\hat{\vec{p}} - \frac{e}{c}\vec{A}(\vec{r}, t)\right) \right] \right\} = \\ &= \frac{\mathrm{i}}{\hbar} \frac{m}{2} \left(\hat{v}_k \left[\hat{v}_k, \hat{v}_i \right] + \left[\hat{v}_k, \hat{v}_i \right] \hat{v}_k \right) - \frac{e}{m} \nabla_i \phi(\vec{r}, t). \end{split}$$

Вычисление коммутатора компонент скорости дает

$$\begin{split} \left[\hat{v}_{i}, \hat{v}_{j} \right] &= -\frac{1}{m^{2}} \frac{e}{c} \left(\left[\hat{p}_{i}, A_{j} \right] + \left[A_{i}, \hat{p}_{j} \right] \right) = \frac{ie\hbar}{m^{2}c} \left((\nabla_{i} A_{j}) - (\nabla_{j} A_{i}) \right) = \\ &= \frac{ie\hbar}{m^{2}c} \varepsilon_{ijk} (\operatorname{rot} \vec{A})_{k} = \frac{ie\hbar}{m^{2}c} \varepsilon_{ijk} \left(\vec{B} \right)_{k}, \end{split}$$

откуда

$$\left(\hat{v}_k \left[\hat{v}_k, \hat{v}_i \right] + \left[\hat{v}_k, \hat{v}_i \right] \hat{v}_k \right) = \frac{\mathrm{i}e\hbar}{m^2 c} \left\{ \hat{v}_k \varepsilon_{kij} \left(\vec{B} \right)_j + \varepsilon_{kij} \left(\vec{B} \right)_j \hat{v}_k \right\} = \frac{\mathrm{i}e\hbar}{m^2 c} \left(- \left[\hat{\vec{v}} \times \vec{B} \right] + \left[\vec{B} \times \hat{\vec{v}} \right] \right)_i .$$

Собирая все вместе, получим

$$\hat{\vec{a}} = -\frac{1}{m} \frac{e}{c} \frac{\partial}{\partial t} \vec{A} - \frac{e}{m} \vec{\nabla} \phi(\vec{r}, t) + \frac{e}{2mc} \left(\left[\hat{\vec{v}} \times \vec{B} \right] - \left[\vec{B} \times \hat{\vec{v}} \right] \right) =
= \frac{e}{m} \left(\vec{E} + \frac{1}{2} \left(\left[\frac{\hat{\vec{v}}}{c} \times \vec{B} \right] - \left[\vec{B} \times \frac{\hat{\vec{v}}}{c} \right] \right) \right).$$
(2.4.1).

4.6. Используя определение оператора эволюции (1.4.8), получим

$$\hat{U}(x, x'; t - t') = \int dp \frac{1}{2\pi\hbar} \exp\left\{\frac{ip(x - x')}{\hbar} - \frac{ip^2(t - t')}{2m\hbar}\right\} = \sqrt{\frac{2m}{\pi\hbar(t - t')}} \exp\left\{\frac{im(x - x')^2}{2\hbar(t - t')}\right\}.$$

5. Одномерное движение в потенциальном поле, стационарный случай

- 5.1. Общие свойства одномерного движения.
- **5.1.** Внутри ямы U(x) = 0, и общее решение уравнения Шредингера $-\frac{\hbar^2}{2m} \psi'' = E \psi$ имеет вид $\psi = c_1 \cos kx + c_2 \sin kx$, где $k = \sqrt{2mE}/\hbar$. Вне ямы $U(|x| \ge a/2) = \infty$, что дает граничное условие $\psi(x = \pm a/2) = 0$. Ввиду симметрии задачи по отношению к

отражению $x \to -x$ решения делятся на симметричные: $\psi_s = c_1 \cos kx$, и антисимметричные: $\psi_a = c_2 \sin kx$. Для симметричных решений граничное условие принимает вид: $\cos(ka/2) = 0$, для антисимметричных решений: $\sin(ka/2) = 0$. С учетом граничных условий $k_n = \frac{\pi}{a}(n+1)$, $E_n = \frac{\hbar^2 k_n^2}{2m}$ (n=0,1,...), где четные n отвечают симметричным, нечетные — антисимметричным решениям. Условие нормировки $\int dx |\psi_n(x)|^2 = 1$ дает $c_1^2 = c_2^2 = 2/a$.

5.2. Наличие добавки $U_1(x) = G\delta(x)$ к исходному потенциалу задачи 5.1 приводит к дополнительному условию вида (1.5.2) на производную волновой функции в точке x = 0 ($\varepsilon \to 0$):

$$\psi'(+\varepsilon) - \psi'(-\varepsilon) = 2\kappa_0 \psi(0), \quad \kappa_0 = \frac{mG}{\hbar^2}. \tag{2.5.1}$$

На *антисимметричные* решения это условие не повлияет, так как для них $\psi(0) = 0$. *Симметричные* решения будем искать в виде $\psi(x) = c\cos(|kx| + \beta)$, где β — неизвестная фаза. Условие (2.5.1) в точке x = 0 дает уравнение $-2k\sin\beta = 2\kappa_0\cos\beta$, и второе уравнение следует из граничного условия при x = a/2: $\cos(ka/2 + \beta) = 0$. Исключая из этих уравнений β , получим трансцендентное уравнение на k:

$$\operatorname{ctg}\left(\frac{ka}{2}\right) = -\frac{\kappa_0 a}{ka} \implies \operatorname{ctg}\left(z\right) = -\frac{\kappa_0 a/2}{z}, \quad z \equiv ka/2. \tag{2.5.2}$$

Рассмотрим предельные случаи:

- (a) добавка мала: $\kappa_0 a \ll 1$. В «нулевом» приближении $\operatorname{ctg}(z) = 0$, откуда $z_n^{(0)} = \frac{\pi}{2}(2n+1)$. В следующем приближении $z_n = z_n^{(0)} + \Delta z_n$, $\Delta z_n \simeq \frac{\kappa_0 a/2}{z_n^{(0)}} = \frac{\kappa_0 a}{\pi(2n+1)}$. Уровни, отвечающие симметричным состояниям, смещаются на относительно малое расстояние $\Delta E / E = 2\Delta z_n / z_n^{(0)} \ll 1$;
- (б) добавка велика: $\kappa_0 a \gg 1$. В этом случае представим уравнение (2.5.2) в виде $\operatorname{tg}(z) = -\frac{z}{\kappa_0 a/2} \ll 1$. В нулевом приближении $\operatorname{tg}(z) = 0$, откуда $z_n^{(0)} = \pi n$, и энергия данного симметричного уровня совпадает с энергией лежащего над ним антисимметричного уровня. В следующем приближении $\Delta z_n \simeq -\frac{2z_n^{(0)}}{\kappa_0 a} = -\frac{2\pi n}{\kappa_0 a}$. В случае

большой добавки четные уровни «прижимаются» к нечетным снизу, оставаясь на относительном расстоянии от них: $\Delta E / E = 2\Delta z_n / z_n^{(0)} \ll 1$. Примечательно, что порядок следования уровней не нарушается даже при $G \rightarrow \infty$!

- **5.3.** Вне ямы (при $x \neq 0$) решение уравнение Шредингера $-\frac{\hbar^2}{2m} \psi'' = (E + G \cdot \delta(x)) \psi$ имеет вид $\psi = c_1 \mathrm{e}^{\kappa x} + c_2 \mathrm{e}^{-\kappa x}$, где $\kappa = \sqrt{2m |E|} / \hbar$ и E < 0. Из требования *нормируемости*. волновой функции ($\psi(x \to \pm \infty) \to 0$) и её *непрерывности* в точке x = 0 получим $\psi(x) = c \mathrm{e}^{-\kappa |x|}$ Из условия (1.5.2) на производную волновой функции в точке x = 0: $\psi'(+0) \psi(-0) = -2 \psi(0) + 2 \psi(0) + 2 \psi(0)$, где $\kappa_0 = mG / \hbar^2$, имеем $\kappa = \kappa_0$, откуда энергия состояния $E = -\frac{\hbar^2 \kappa_0^2}{2m}$. Нормируя $\int \mathrm{d}x \, |\psi(x)|^2 = 1$, в итоге получим $\psi(x) = \sqrt{\kappa_0} \mathrm{e}^{-\kappa_0 |x|}$.
- **5.4.** Рассмотрим волну, падающую слева $\psi_{\text{пад}} = \mathrm{e}^{\mathrm{i}kx}$, где $k = \sqrt{2mE} / \hbar$, отраженную волну $\psi_{\mathrm{отр}} = a\mathrm{e}^{-\mathrm{i}kx}$ и прошедшую волну $\psi_{\mathrm{пр}} = b\mathrm{e}^{\mathrm{i}kx}$. Условие сшивки амплитуды волновой функции в точке x = 0 дает: 1 + a = b. Условие сшивки производной (1.5.2) даст $\mathrm{i}k(1 a b) = 2\kappa_0 b$, откуда амплитуда отраженной и прошедшей волны:

$$a = -\frac{\kappa_0}{\kappa_0 + ik}, \quad b = \frac{ik}{\kappa_0 + ik}; \quad |a|^2 + |b|^2 = 1.$$

Обе амплитуды имеют полюс при $k=\mathrm{i}\kappa_0$. Отметим, что соответствующая энергия $E=\frac{\hbar^2k^2}{2m}\Big|_{k=\mathrm{i}\kappa_0}=-\frac{\hbar^2\kappa_0^2}{2m}$ совпадает с найденной в задаче 5.3 энергией связанного состояния.

- **5.5.** Рассмотрим три области, в каждой из которых U(x) постоянен:
- (1) внутри ямы: |x| < a, $U(x) = -U_0$; (2) справа от ямы: x > a, U(x) = 0; (3) слева от ямы x < -a, U(x) = 0. Ввиду симметрии по отношению к отражению $x \to -x$ собственные состояния гамильтониана делятся на симметричные (четные) и антисимметричные (нечетные).

Для *четных* состояний волновая функция *внутри* ямы (|x| < a) имеет вид $\psi_1(x) = c_1 \cos(k_1 x)$, где $k_1 = \sqrt{2m(U_0 - |E|)} / \hbar$, а *вне* ямы (|x| > a) экспоненциально

затухает: $\psi_2(x) = c_2 \mathrm{e}^{-\kappa x}$ и $\psi_3(x) = c_3 \mathrm{e}^{\kappa x} = \psi_2(-x)$, где $\kappa = \sqrt{2m|E|}/\hbar$. На границе раздела x = a и волновая функция, и ее производная должны быть непрерывны: $\psi_1(a) = \psi_2(a)$; $\psi_1'(a) = \psi_2'(a)$. Деля второе уравнение на первое:

$$\frac{\psi_1'(a)}{\psi_1(a)} = \frac{\psi_2'(a)}{\psi_2(a)} \implies k_1 \operatorname{tg}(k_1 a) = \kappa,$$

получим трансцендентное уравнение, определяющее энергетический спектр связанных состояний, которое удобно проанализировать графически (см. рис. 2.5.1). С этой целью введем переменную $z = k_1 a$ и запишем уравнение в виде

$$tg(z) = \frac{\kappa}{k_1} = \sqrt{\frac{k_{\text{max}}^2 a^2}{z} - 1},$$
 (2.5.3)

где $k_{\max} = \sqrt{2mU_0}$. Левая часть уравнения представляет собой набор ветвей функции $y = \operatorname{tg}(z + \pi n)$, где n = 0, 1, 2, ..., тогда как правая часть уравнения $y = f(z, k_{\max} a) \equiv \sqrt{(k_{\max} a)^2 / z^2 - 1}$ является монотонной функцией, обращающейся в нуль при $z_{\max} = k_{\max} a$. Соответствующие уравнению (2.5.3) графики приведены на рис. 2.5.1(a).

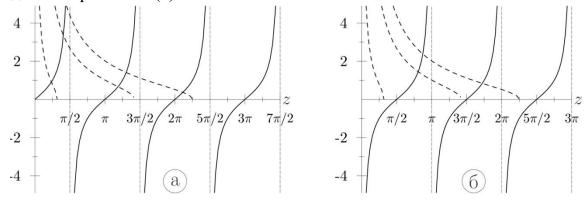


Рис. 2.5.1. *К задаче* 5.5: графическое решение: (а) уравнения (2.5.3); (б) уравнения (2.5.4). Левая часть уравнения (2.5.3) представлена на рис. 2.5.1(а) сплошными линиями, а правая часть — штриховыми. Искомым решением уравнения (2.5.3) на графике является множество точек пересечения *штриховой* линии со *сплошной* $\{z_i\}$ (где, очевидно, все $z_i \le z_{\text{max}}$), отвечающее набору энергетических уровней $\{E_i = \hbar^2 z_i^2 / 2ma^2 - U_0\}$.

По меньшей мере одна точка пересечения z, лежащая внутри интервала $0 < z < \pi/2$, существует всегда: т. е., *как минимум*, одно *симметричное* состояние имеется *при любых* параметрах ямы U_0 и a. Для существования следующих n уровней необходимо, чтобы $z_{\rm max}$ (точка пересечения на графике штриховой линии с осью z) лежала правее точки $z = \pi n$, что дает условие на параметры потенциальной ямы $z_{\rm max} \equiv (2mU_0)^{1/2}a/\hbar \ge \pi n$, где $n = 1, 2, \ldots$

Для нечетных состояний выберем волновую функцию внутри ямы (|x| < a) в виде $\psi_1(x) = c_1 \sin(k_1 x)$, а вне ямы (|x| > a): $\psi_2(x) = c_2 \mathrm{e}^{-\kappa x}$ и $\psi_3(x) = -\psi_2(-x)$. Как и в предыдущем случае, в результате сшивки на границе x = a имеем уравнение

$$-\operatorname{ctg}(z) = \frac{\kappa}{k_1} = \sqrt{\frac{k_{\text{max}}^2}{k_1^2} - 1} = \sqrt{\frac{k_{\text{max}}^2 a^2}{z} - 1} , \qquad (2.5.4)$$

графическое решение которого представлено на рисунке 2.5.1(б). Из данного рисунка видно, что *нечетные* связанные состояния возникают лишь при выполнении условия $z_{\text{max}} \equiv (2mU_0)^{1/2} a/\hbar \ge \pi (n+1/2), \ n=0,1,2,....$

5.6. Потенциал U(x) в данной задаче при x>0, совпадая с потенциалом предыдущей задачи, отличается от него в точке x=0 наличием непроницаемой стенки $U(x=0)=\infty$, что приводит в этой точке к граничному условию $\psi(x=0)=0$.

Легко убедиться, что такому граничному условию автоматически удовлетворяют антисимметричные (нечетные) решения задачи 5.5, если ограничиться областью $x \ge 0$. Соответственно, первое связанное состояние появится при $(2mU_0)^{1/2}a/\hbar \ge \pi/2$, или $U_0 = (\pi\hbar)^2/8ma^2$.

5.7. Ввиду симметрии потенциала U(x) = U(-x) решения должны обладать определенной четностью $\psi(-x) = \pm \psi(x)$. Ищем волновую функцию в виде

$$\psi_1 = c_1(e^{\kappa x} \pm e^{-\kappa x})$$
 при $|x| < a$, $\psi_2(x) = c_2 e^{-\kappa x}$ при $x > a$; $\kappa = \sqrt{2m|E|} / \hbar \ge 0$, где E – энергия связанного состояния. Используя условие сшивки в точке $x = a$ с учетом формулы (1.5.2), получим систему двух однородных уравнений:

$$\begin{cases} c_{1}(e^{\kappa a} \pm e^{-\kappa a}) - c_{2}e^{-\kappa a} = 0, \\ c_{1}\kappa(e^{\kappa a} \mp e^{-\kappa a}) - c_{2}(2\kappa_{0} - \kappa)e^{-\kappa a} = 0, \end{cases}$$

где $\kappa_0 = mG/\hbar^2$. Приравняв детерминант системы нулю, получим уравнение на κ :

$$\kappa_+ - \kappa_0 = \pm \kappa_0 e^{-2\kappa a} . \tag{2.5.5}$$

В пределе $a\to\infty$ получим $\delta\kappa_\pm=\kappa_\pm-\kappa_0=\pm\kappa_0 e^{-2\kappa a}\approx\pm\kappa_0 e^{-2\kappa_0 a}$, откуда энергия уровней $E_\pm=-\frac{\hbar^2\kappa_\pm^2}{2m}\approx E_0\Big(1\pm 2e^{-2\kappa_0 a}\Big)$, где $E_0=-\frac{\hbar^2\kappa_0^2}{2m}$ — энергия уровня в одиночной яме. При сближении ям симметричный уровень понижается, энергия антисимметричного уровня повышается и при некотором расстоянии a обратится в нуль. Рассматривая в уравнении (2.5.5) предел $\kappa\to 0$, для антисимметричного уровня имеем $\kappa=\kappa_0(1-e^{-2\kappa a})\approx\kappa_0\cdot 2\kappa a$, откуда значение параметра $a=1/2\kappa_0$. Для симметричного состояния при $a\to 0$ параметр $\kappa\to 2\kappa_0$, и соответствующая энергия стремится к *учетверенной* энергии уровня в одиночной яме: $E_+\to -\frac{\hbar^2(2\kappa_0)^2}{2m}=4E_0$.

5.2. Движение квантовых частиц в периодическом потенциале

5.8. Выберем волновую функцию в ячейке между δ -ямами (см. формулу (1.5.6)) в виде:

$$\overline{\Psi}_{q}(\overline{x}) = c_{1}\overline{\Phi}_{1}(\overline{x}; E) + c_{2}\overline{\Phi}_{2}(\overline{x}; E) = c_{1}e^{\kappa \overline{x}} + c_{2}e^{-\kappa \overline{x}};$$

$$\overline{\Phi}_{1}(\overline{x}; E) = e^{\kappa \overline{x}}, \quad \overline{\Phi}_{2}(\overline{x}; E) = e^{-\kappa \overline{x}}, \quad \kappa = \sqrt{2m|E|} / \hbar \quad (E < 0),$$
(2.5.6)

где $0 \le \overline{x} \le a$. В соседней ячейке $a \le \overline{\overline{x}} \le 2a$ согласно теореме Блоха (1.5.4) волновая функция $\overline{\psi}_q(\overline{\overline{x}}) = \mathrm{e}^{\mathrm{i} q a} \overline{\psi}_q(\overline{\overline{x}} - a)$. Сшивая волновую функцию и ее производную (с учетом формулы (1.5.2)) в точке x = a, получим систему уравнений, однородных относительно коэффициентов c_1 и c_2 :

$$\overline{\psi}_{q}(a) - \overline{\psi}_{q}(a) = c_{1}(\mathrm{e}^{\mathrm{i}qa} - \mathrm{e}^{\kappa a}) + c_{2}(\mathrm{e}^{\mathrm{i}qa} - \mathrm{e}^{-\kappa a}) = 0,$$

$$\overline{\psi}_{q}'(a) - \overline{\psi}_{q}'(a) + 2\kappa_{0}\overline{\psi}_{q}(a) = c_{1}\Big(\kappa\mathrm{e}^{\mathrm{i}qa} - (\kappa - 2\kappa_{0})\mathrm{e}^{\kappa a}\Big) - c_{2}\Big(\kappa\mathrm{e}^{\mathrm{i}qa} - (\kappa + 2\kappa_{0})\mathrm{e}^{-\kappa a}\Big) = 0.$$
 где $\kappa_{0} = mG/\hbar^{2}$. Приравнивая к нулю детерминант системы, получим уравнение на κ :

$$\cos(qa) = \operatorname{ch}(\kappa a) - \frac{\kappa_0}{\kappa} \operatorname{sh}(\kappa a)$$
.

Решение этого уравнения дает $\kappa = \kappa(q)$, а также энергию $E(q) = -\frac{\hbar^2 \kappa^2(q)}{2m}$, как функцию непрерывного параметра $q: -\pi \le qa \le \pi$, образующую *зону непрерывно-го спектра*.

В пределе, когда ямы находятся достаточно далеко друг от друга ($\kappa_0 a \gg 1$), аналитическое решение дает

$$E(q) \approx -\frac{\hbar^2 \kappa_0^2}{2m} \left(1 + 4e^{-\kappa a} \cos(qa) \right).$$

Параметризация энергетического спектра в окрестности «дна» зоны $E(q) \approx E(0) + \frac{\hbar^2 q^2}{2m^*} \text{ дает } \Rightarrow \phi \phi \text{ вективную массу } m^* = \frac{m \mathrm{e}^{\kappa a}}{2\kappa_0^2 a^2} \text{ и } \Rightarrow \phi \phi \text{ вективную скорость}$ квантовой частицы $v_{\Rightarrow \varphi \varphi} = \frac{\mathrm{d} E(q)}{\mathrm{d} \hbar a} = \frac{\hbar q}{m} \cdot 2\kappa_0^2 a^2 \mathrm{e}^{-\kappa a}$.

5.9. Для симметричных и антисимметричных состояний волновая функция имеет вид: $\Psi_q(x) = \frac{1}{\sqrt{2}} \Big(\psi_q(x) \pm \psi_{-q}(x) \Big)$. Применяя граничное условие в точке x = Na: $0 = \Psi_q(x = Na) = \frac{1}{\sqrt{2}} \Psi_q(0) \Big(\mathrm{e}^{\mathrm{i} q a N} \pm \mathrm{e}^{-\mathrm{i} q a N} \Big)$, получим для симметричных состояний $q_n = \frac{\pi}{Na} \Big(n + \frac{1}{2} \Big)$ и для антисимметричных $q_n = \frac{\pi(n+1)}{Na}$, где $n = 0, 1, \ldots, N-1$. С учетом зависимости E = E(q), найденной в задаче 5.8, получим соответствующий дискретный спектр $E_n = E(q_n)$ для симметричных и антисимметричных уровней.

5.3. Гармонический осциллятор

5.10. Интегрирование уравнения (1.5.25) дает $\Psi_0(x) = c e^{-x^2/2x_0^2}$. Из условия нормировки имеем: $\int dx |\Psi_0(x)|^2 = |c|^2 \sqrt{\pi x_0^2} = 1$, откуда $c = \left(\pi x_0^2\right)^{1/4}$.

5.11. Вычислить коммутаторы:

(а) $[\hat{a},(\hat{a}^+)^n] = \hat{a}\underbrace{\hat{a}^+ \cdots \hat{a}^+}_n - \underbrace{\hat{a}^+ \cdots \hat{a}^+}_n \hat{a}$. Переставляя в первом слагаемом пошагово \hat{a} вправо, на каждом шаге используем $\hat{a}\hat{a}^+ = \hat{a}^+\hat{a} + 1$. После n шагов получим $\hat{a}\underbrace{\hat{a}^+ \cdots \hat{a}^+}_n = n\underbrace{\hat{a}^+ \cdots \hat{a}^+}_{n-1} + \underbrace{\hat{a}^+ \cdots \hat{a}^+}_n \hat{a}$, откуда $[\hat{a},(\hat{a}^+)^n] = n(\hat{a}^+)^{n-1}$.

(б)
$$[\hat{H}, \hat{a}^+] = [\hbar\omega(\hat{a}^+\hat{a} + 1/2), \hat{a}^+] = \hbar\omega\hat{a}^+$$
, откуда $[\hat{H}, (\hat{a}^+)^n] = [\hbar\omega(\hat{a}^+\hat{a} + 1/2), (\hat{a}^+)^n] = n\hbar\omega\hat{a}^+$.

5.12. Используя результат предыдущей задачи, получим

$$\hat{H}\frac{(\hat{a}^{+})^{n}}{\sqrt{n!}}|0\rangle = \frac{1}{\sqrt{n!}}\Big([\hat{H},(\hat{a}^{+})^{n}] + (\hat{a}^{+})^{n}\hat{H}\Big)|0\rangle = \Big(n\hbar\omega + \frac{\hbar\omega}{2}\Big)\frac{(\hat{a}^{+})^{n}}{\sqrt{n!}}|0\rangle = \hbar\omega\Big(n + \frac{1}{2}\Big)\frac{(\hat{a}^{+})^{n}}{\sqrt{n!}}|0\rangle.$$

5.13. Для состояния $|n\rangle$ средние равны:

(a)
$$\langle x \rangle = \langle n | \hat{x} | n \rangle = \frac{x_0}{\sqrt{2}} \langle n | (\hat{a} + \hat{a}^+) | n \rangle = 0$$
,

$$\langle x^2 \rangle = \langle n | \hat{x}^2 | n \rangle = \frac{x_0^2}{2} \langle n | (\hat{a} + \hat{a}^+)^2 | n \rangle = \frac{x_0^2}{2} \langle n | \hat{a}^2 + \hat{a}\hat{a}^+ + \hat{a}^+\hat{a} + (\hat{a}^+)^2 | n \rangle = x_0^2 (n + \frac{1}{2});$$

(6)
$$\langle p \rangle = \langle n | \hat{p} | n \rangle = \frac{p_0}{i\sqrt{2}} \langle n | (\hat{a} - \hat{a}^+) | n \rangle = 0$$
,

$$\langle p^{2} \rangle = \langle n | \hat{p}^{2} | n \rangle = -\frac{p_{0}^{2}}{2} \langle n | (\hat{a} - \hat{a}^{+})^{2} | n \rangle =$$

$$= -\frac{p_{0}^{2}}{2} \langle n | \hat{a}^{2} - \hat{a}\hat{a}^{+} - \hat{a}^{+}\hat{a} + (\hat{a}^{+})^{2} | n \rangle = p_{0}^{2} \left(n + \frac{1}{2} \right).$$

- (в) произведение неопределенностей: $\langle (x-\langle x \rangle)^2 \rangle \langle p \rangle \rangle \langle p \rangle \langle p \rangle \rangle \langle p \rangle \langle p \rangle \rangle \langle p \rangle$
- **5.14.** Действуя на состояние $|\alpha\rangle = \mathrm{e}^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$ оператором \hat{a} , получим

$$\hat{a}e^{-\frac{1}{2}|\alpha|^2}\sum_{n=0}^{\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle = e^{-\frac{1}{2}|\alpha|^2}\sum_{n=1}^{\infty}\frac{\alpha^n}{\sqrt{n!}}\sqrt{n}|n-1\rangle = \alpha e^{-\frac{1}{2}|\alpha|^2}\sum_{\tilde{n}=0}^{\infty}\frac{\alpha^{\tilde{n}}}{\sqrt{\tilde{n}!}}|\tilde{n}\rangle|\tilde{n}\rangle = \alpha|\alpha\rangle,$$

т. е. когерентное состояние $|\alpha\rangle$ (1.5.23) является собственным состоянием оператора \hat{a} с собственным значением, равным α .

5.15. Распределение вероятности по n для когерентного состояния $|\alpha\rangle$ (1.5.23)

$$w(n) = \mathrm{e}^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!} \equiv w(E_n)$$
, где $E_n = \hbar \omega \Big(n + \frac{1}{2} \Big)$, а среднее $\overline{n} = \sum_{n=1}^{\infty} n \, w(n) = |\alpha|^2$.

Средняя энергия для когерентного состояния $|\alpha\rangle$: $\overline{E} = \hbar\omega(\overline{n} + \frac{1}{2}) = \hbar\omega(|\alpha|^2 + \frac{1}{2})$.

5.16. Для когерентного состояния $|\alpha\rangle$ (1.5.23), используя определение $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$ и эрмитово сопряженное ему уравнение $\langle\alpha|\hat{a}^+ = \langle\alpha|\alpha^*$, получим:

(a)
$$\langle x \rangle = \frac{x_0}{\sqrt{2}} \langle \alpha | \hat{a} + \hat{a}^+ | \alpha \rangle = \frac{x_0}{\sqrt{2}} (\alpha + \alpha^*) = \sqrt{2} x_0 \operatorname{Re} \alpha$$
. Аналогично вычисляется

$$\langle x^2 \rangle = \frac{x_0^2}{2} \langle \alpha | (\hat{a} + \hat{a}^+)^2 | \alpha \rangle = \frac{x_0^2}{2} \langle \alpha | \hat{a}^2 + (\hat{a}^+)^2 + 2\hat{a}^+ \hat{a} + 1 | \alpha \rangle = 2x_0^2 \Big((\operatorname{Re} \alpha)^2 + \frac{1}{4} \Big);$$

(6)
$$\langle p \rangle = \frac{p_0}{i\sqrt{2}} \langle \alpha | \hat{a} - \hat{a}^+ | \alpha \rangle = \sqrt{2} p_0 \operatorname{Im} \alpha$$
,

$$\langle p^2 \rangle = -\frac{p_0^2}{2} \langle \alpha | (\hat{a} - \hat{a}^+)^2 | \alpha \rangle = \frac{p_0^2}{2} \langle \alpha | -\hat{a}^2 - (\hat{a}^+)^2 + 2\hat{a}^+ \hat{a} + 1 | \alpha \rangle = 2p_0^2 \Big((\operatorname{Im} \alpha)^2 + \frac{1}{4} \Big);$$

- (в) произведение неопределенностей $\langle (x-\langle x\rangle)^2\rangle \langle (p-\langle p\rangle)^2\rangle = \frac{1}{4}\,p_0\,x_0 = \frac{1}{4}\,\hbar^2$. Отметим, что оно остается минимально возможным *при любом* значении α !
- **5.17.** Для когерентного состояния $|\alpha;t\rangle$ (1.5.24), с учетом результатов предыдущей задачи, а также того, что $|\alpha;t\rangle = \left|\alpha e^{-i\omega t}\right\rangle e^{-\frac{i}{2}\omega t}$ и $\alpha = \alpha_0 e^{-i\varphi}$, $\alpha_0 \equiv |\alpha|$, получим:

(a)
$$\langle x(t) \rangle = \sqrt{2}x_0\alpha_0 \cos(\omega t + \varphi)$$
, $\langle x^2(t) \rangle = 2x_0^2 \left(\alpha_0^2 \cos^2(\omega t + \varphi) + \frac{1}{4}\right)$;

(6)
$$\langle p(t) \rangle = -\sqrt{2}p_0\alpha_0\sin(\omega t + \varphi), \ \langle p^2(t) \rangle = 2p_0^2\left(\alpha_0^2\sin^2(\omega t + \varphi) + \frac{1}{4}\right);$$

(в) произведение неопределенностей

$$\langle (x(t)-\langle x(t)\rangle)^2\rangle \langle (p(t)-\langle p(t)\rangle)^2\rangle = \frac{1}{4}p_0x_0 = \frac{1}{4}\hbar^2$$
, и оно *не зависит* от времени.

6. Квазиклассическая динамика. Приближение ВКБ, квантование Бора — Зоммерфельда, квантовое туннелирование

6.1. Используя правило квантования Бора — Зоммерфельда (1.6.7), для гармонического осциллятора с гамильтонианом $\hat{H} = \frac{\hat{p}}{2m} + \frac{m\omega x^2}{2}$ имеем

$$\frac{1}{2\pi\hbar} \oint p(x; E_n) dx = \frac{1}{2\pi\hbar} 4 \int_0^a dx \sqrt{2m \left(E_n - \frac{m\omega^2 x^2}{2} \right)} = \frac{4E_n}{\pi\hbar\omega} \int_0^1 d\xi \sqrt{1 - \xi^2} = \frac{E_n}{\hbar\omega} = \left(n + \frac{1}{2} \right),$$

где $a=\sqrt{2E/m\omega^2}$ — классическая точка поворота. В итоге $E_n=\hbar\omega\Big(n+\frac{1}{2}\Big).$

6.2.
$$E_n = \frac{1}{2} \left(\frac{3\pi\hbar\alpha}{2\sqrt{m}} \left(n + \frac{1}{2} \right) \right)^{\frac{2}{3}}$$
.

6.3.
$$E_n = -\frac{2me^4}{\hbar^2(n+\frac{1}{2})^2}$$
.

6.4.
$$E_n = \frac{\beta^{1/3}}{4m^{2/3}} \left(\frac{\pi\hbar\left(n+\frac{1}{2}\right)}{I}\right)^{4/3}$$
, где $I \equiv \int_0^1 \mathrm{d}t \left(1-t^4\right)^{1/2}$.

6.5. Рассмотрим задачу для потенциала $\tilde{U}(x)$, продолженного симметрично в область $x \le 0$: $\tilde{U}(x) = \gamma |x|^3$, где $-\infty \le x \le \infty$. Применяя для него правило квантования Бора — Зоммерфельда, получим $\tilde{E}_n = \frac{\gamma^{2/5}}{2^{9/5} m^{3/5}} \Big(\frac{\pi \hbar}{I} \Big(n + \frac{1}{2} \Big) \Big)^{6/5}$, где $I = \int\limits_0^1 \mathrm{d}t \Big(1 - t^3 \Big)$.

Решения с n = 2k и с n = 2k + 1, где k = 0, 1, ... отвечают соответственно *четным* и *нечетным* квантовым состояниям.

Граничному условию $\Psi(x=0)=0$ для исходной задачи удовлетворяют лишь *нечетные* решения для потенциала $\tilde{U}(x)$. С учетом этого спектр энергий для исходной задачи: $E_k = \tilde{E}_{2k+1} = \frac{\gamma^{2/5}}{2^{9/5} m^{3/5}} \left(\frac{2\pi\hbar}{I} \left(k + \frac{3}{4}\right)\right)^{6/5}$.

6.6 Потенциал внутри металла U(x<0)=0, вне металла $U(x>0)=U_0-e\mathcal{E}x$, где $\mathcal{E}-$ напряженность приложенного электрического поля ($\sim 10^6\,\mathrm{B/cm}$), а e- заряд электрона. С учетом наличия у электрона внутри металла кинетической энергии E работа выхода электрона из металла равна U_0-E .

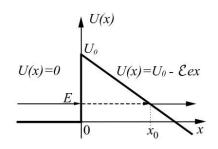


Рис. 2.6.1 К задаче 6.6

Коэффициент проницаемости барьера согласно формуле (1.6.8) равен

$$D = \exp\left(-\frac{2}{\hbar} \int_{0}^{x_0} dx \sqrt{2m(U_0 - E - e\mathcal{E}x)}\right) = \exp\left(-\frac{4}{3} \frac{\sqrt{2m}}{\hbar} \frac{(U_0 - E)^{3/2}}{e\mathcal{E}}\right).$$

Поток электронов, налетающих на барьер, оценим как $j_0 = n \langle v \rangle \sim n \sqrt{2mE}$, где n- плотность электронов в металле. В итоге плотность тока холодной эмиссии

$$j = j_0 D \sim n \sqrt{2mE} \exp \left(-\frac{4}{3} \frac{\sqrt{2m}}{\hbar} \frac{(U_0 - E)^{3/2}}{e\mathcal{E}} \right).$$

7. Движение в центральном поле.

7.1. Общие свойства движения в центральном поле

7.1. Предположим, что размер квантового состояния равен ℓ . Далее, исходя из соотношения неопределенностей (аналогично тому, как делалось в задаче 2.4), оценим энергию состояния $E(\ell) \sim \hbar^2 / 2m\ell^2 - \gamma / \ell^s$. Легко видеть, что $E(\ell)$ ограничена снизу и имеет минимум лишь при s < 2. Приравняв ее производную к нулю и найдя минимум, для энергии основного состояния получаем оценку: $E \gtrsim -\frac{(2-s)}{2} \gamma^{\frac{2}{2-s}} \left(\frac{ms}{\hbar^2}\right)^{\frac{s}{2-s}}$. В случае, когда s > 2, при $\ell \to 0$ энергия $E(\ell) \to -\infty$, и происходит падение частицы на центр.

7.2. Запишем уравнение (1.7.6) для радиальной волновой функции $R_{nl}(r)$:

$$-\frac{\hbar^{2}}{2m}\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)R_{nl}(r) + \left(\frac{\hbar^{2}l(l+1)}{2mr^{2}} + U(r)\right)R_{nl}(r) = E_{nl}R_{nl}(r),$$

и рассмотрим в нем предел $r \to 0$. В этом пределе можно пренебречь слагаемыми, пропорциональными потенциальной энергии U(r), и тем более энергией состояния E_{nl} . Для получившегося уравнения

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)R_{nl}(r) + \frac{\hbar^2l(l+1)}{2mr^2}R_{nl}(r) = 0$$

будем искать решение в степенном виде $R_{nl}(r) = c \, r^{\alpha}$. Подстановка дает уравнение на параметр α : $-\alpha(\alpha+1)+l(l+1)=0$ с корнями $\alpha=-(l+1)$ и $\alpha=l$. Первый корень должен быть отброшен, так как он отвечает решению, *сингулярному* при $r \to 0$, второй же дает искомый результат $R_{nl}(r) \propto r^l$.

7.3. Воспользуемся уравнением (1.7.8) для эквивалентной одномерной задачи:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}\chi_{nl}(r) + U_{9\varphi\varphi}(r)\chi_{nl}(r) = E_{nl}\chi_{nl}(r),$$

где $\chi_{nl}(r)$ связана с радиальной волновой функцией $R_{nl}(r)$ как $\chi_{nl}(r) = rR_{nl}(r)$. В нашем случае l=0, поэтому $U_{9\varphi\varphi}(r) = U(r)$, где $U(r) = -U_0$ при r < a, и U(r) = 0 при $r \ge a$, что в точности совпадает с условием задачи 5.6. Соответст-

венно, энергетический спектр уровней совпадает со спектром задачи 5.6. Условие появления первого связанного состояния $U_0 \ge \left(\pi\hbar\right)^2/8ma^2$.

7.2. Атом водорода

7.4. Пусть размер основного состояния атома водорода $\langle \Delta r \rangle \sim \ell$. Из соотношения неопределенностей Гейзенберга соответствующий импульс электрона можно оценить как $p \sim \Delta p \gtrsim \hbar/\Delta x \sim \hbar/\ell$, что дает оценку энергии электронного состояния как функции параметра ℓ : $E(\ell) \sim \hbar^2/2m\ell^2 - e^2/\ell$ (ср. с формулой (2.2.1) в задаче 2.4). Для нахождения энергии основного (наинизшего) состояния минимизируем $E(\ell)$ по параметру ℓ : $\left(E(\ell_{\min})\right)' = 0$, откуда $\ell_{\min} = \frac{\hbar^2}{me^2}$ и энергия основного состояния $E(\ell_{\min}) = -\frac{me^4}{2\hbar^2}$.

7.5. Степень вырождения уровня атома водорода $g(n) = \sum_{l=0}^{n-1} (2l+1) = n^2$.

7.6. Энергия атома водорода по формуле (1.7.9) равна $E_n = -\text{Ry}/n^2$. Согласно **меореме о вириале** [1, с. 76; 9, с. 225–227; 11, с. 29–30] для *кулоновской* системы средняя потенциальная энергия $\langle U \rangle = 2E$, где E – полная энергия. Тогда $\langle U \rangle \equiv \left\langle -e^2 / r \right\rangle = -2\text{Ry}/n^2 = -e^2 / a_B n^2$, откуда $\left\langle r^{-1} \right\rangle = a_B^{-1} n^{-2}$, или $\langle r \rangle \propto a_B n^2$.

7.7. Для суперпозиции квантовых состояний атома водорода 2S и 2P

$$\Psi(r,\theta,\phi) = c_1 R_{20}(r) Y_{00}(\theta,\phi) + c_2 R_{21}(r) Y_{10}(\theta,\phi)$$
 (2.7.1)

запишем средний электрический дипольный момент

$$\begin{split} \left< d_z \right> &= e \int r^2 \mathrm{d}r \mathrm{d}\Omega \, | \, \Psi(r, \theta, \varphi) \, |^2 \, r \cos \theta = \\ &= (c_1 c_2^* + c_1^* c_2) e \int r^2 \mathrm{d}r R_{20}(r) r R_{21}(r) \int \mathrm{d}\Omega Y_{00}(\theta, \varphi) \cos \theta Y_{10}(\theta, \varphi) \end{split}$$

Здесь учтено, что электрический дипольный момент равен нулю при усреднении по состоянию с определенным орбитальным моментом (l=0,1), а отличный от нуля вклад возникает лишь за счет перекрестных членов. Подставляя в интегралы

$$R_{20} = \frac{1}{\sqrt{2a_B^3}} \left(1 - \frac{r}{a_B} \right) e^{-r/a_B}, \quad R_{21} = \frac{r}{2\sqrt{6a_B^5}} e^{-r/a_B}, \quad Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta,$$

и производя интегрирование, получим

$$\langle d_z \rangle = -(c_1 c_2^* + c_1^* c_2) 3ea_B = -|c_1| |c_2| \cos(\varphi_1 - \varphi_2) 3ea_B,$$

где $c_{1,2}\equiv \mid c_{1,2}\mid \mathrm{e}^{\mathrm{i}\phi_{1,2}}$. Для нахождения максимального значения достаточно положить $\phi_1-\phi_2=0$ или $\phi_1-\phi_2=\pi$. Максимальное значение произведения $\mid c_1\mid\mid c_2\mid$ с учетом нормировки $\mid c_1\mid^2+\mid c_2\mid^2=1$ достигается при $\mid c_1\mid=\mid c_2\mid=\frac{1}{\sqrt{2}}$.

Таким образом, максимальное значение дипольного момента $\langle d_z \rangle = \mp \frac{3}{2} e a_B$.

7.8 Степень вырождения уровней атома водорода ввиду так называемого случайного вырождения равна n^2 (см. задачу 7.5), т. е. должна быть полным квадратом. Соответственно, из перечисленных значений допустимыми являются 4, 9, 16, 25.

В произвольном (*не кулоновском* потенциале) случайное вырождение отсутствует и степень вырождения определяется лишь числом различных проекций орбитального момента 2l+1, т. е. должна быть *нечетным* числом. В этом случае из перечисленных значений допустимыми являются 7, 9, 15, 25.

8. Движение частицы в магнитном поле. Спин

- 8.1. Электрон в однородном магнитном поле
- **8.1.** Запишем гамильтониан электрона в однородном магнитном поле (1.8.1): $\hat{H} = \frac{1}{2m} \left(\hat{\vec{p}} \frac{e}{c} \vec{A}(\vec{r}) \right)^2, \text{ где } \vec{A} = \frac{1}{2} (\vec{B} \times \vec{r}) = \frac{1}{2} (-yB, xB, 0), \text{ и поле } \vec{B} \parallel \vec{e}_z \text{ не зависит от времени. Согласно результатам задачи 4.5 для оператора скорости имеем:$

$$\hat{v}_x = \frac{1}{m}(\hat{p}_x + \frac{eB}{2c}y), \quad \hat{v}_y = \frac{1}{m}(\hat{p}_y - \frac{eB}{2c}x); \quad [\hat{v}_x, \hat{v}_y] = i\hbar \frac{eB}{m^2c}.$$

Введем операторы $\hat{P} = m\hat{v}_y$ и $\hat{Q} = \frac{1}{\omega_c}\hat{v}_x$, где $\omega_c = \frac{eB}{mc}$ — ларморовская частота движения электрона по замкнутой орбите в плоскости xy, перпендикулярной на-

правлению магнитного поля \vec{B} . Легко убедиться, что операторы \hat{P} и \hat{Q} образуют каноническую пару: $[\hat{P},\hat{Q}] = -\mathrm{i}\hbar$. Выражая \hat{H} через операторы \hat{P} и \hat{Q} , получим

$$\hat{H} = \frac{1}{2m} \left(\hat{\vec{p}} - \frac{e}{c} \vec{A}(\vec{r}) \right)^2 = \frac{m}{2} \left(\hat{v}_x^2 + \hat{v}_y^2 \right) + \frac{\hat{p}_z^2}{2m} = \left(\frac{\hat{p}^2}{2m} + \frac{m\omega_c^2 \hat{Q}^2}{2} \right) + \frac{\hat{p}_z^2}{2m},$$

где первое слагаемое представляет собой гамильтониан гармонического осциллятора, а второе описывает свободное движение вдоль оси z. Используя известные результаты для квантования гармонического осциллятора и квантования свободного движения, получим энергетический спектр

$$E(n, p_z) = \hbar\omega \left(n + \frac{1}{2}\right) + \frac{1}{2m}p_z^2$$

где $n=0,\,1,\,\dots$ номер квантового состояния гармонического осциллятора, p_z – импульс электрона вдоль оси z .

- **8.2.** Так же, как и в классическом, в квантовом случае электрон в плоскости, перпендикулярной магнитному полю, совершает циклическое движение с ларморовской частотой $\omega_c = \frac{eB}{mc}$. Однако в отличие от классического случая кинетическая энергия такого движения квантована: $E_k = \left\langle \frac{m}{2} \left(\hat{v}_x^2 + \hat{v}_y^2 \right) \right\rangle = \hbar \omega \left(n + \frac{1}{2} \right)$ (см. задачу 8.1). Ее значение при n=0 определяет оценку минимальной скорости электрона в присутствии магнитного поля: $v_0 \sim \sqrt{2E/m} = \sqrt{\hbar \omega/m}$. Размер соответствующего квантового состояния можно оценить, как $r_0 \sim v/\omega_c = \sqrt{\hbar/m\omega_c} = \sqrt{\hbar c/eB}$.
- **8.3.** Согласно формуле (1.8.2), за диамагнитные свойства атома отвечает слагаемое гамильтониана $\hat{H}_{\text{диам}} \equiv \frac{e^2}{8mc^2} (\vec{B} \times \vec{r})^2$. Усредняя $\hat{H}_{\text{диам}}$ по основному состоянию атома водорода, получим поправку к энергии

$$\Delta E = \left\langle \psi_{100} \middle| \hat{H}_{\text{диам}} \middle| \psi_{100} \right\rangle = \frac{e^2 B^2}{8\pi a_B^3 m c^2} \int d^3 r \, e^{-2r/a_B} r^2 \sin^2 \theta = \frac{e^2 B^2 a_B^2}{4mc^2},$$

откуда магнитная восприимчивость $\chi = -\frac{\partial^2}{\partial B^2} \Delta E = -\frac{e^2 a_B^2}{2mc^2} < 0$, т. е. данный вклад действительно описывает *диамагнитные* свойства атома.

8.2. Спин электрона

8.4. Используя свойства матриц Паули, представленные в (1.8.6), и записывая $(\vec{a}\vec{\sigma})(\vec{b}\vec{\sigma})$ в компонентном виде, получим

$$\begin{split} &(\vec{a}\vec{\sigma})(\vec{b}\vec{\sigma}) = \sum_{ij} a_i b_j \sigma_i \sigma_j = \sum_{ij} a_i b_j \left(\frac{1}{2} \left(\sigma_i \sigma_j + \sigma_j \sigma_i\right) + \frac{1}{2} \left(\sigma_i \sigma_j - \sigma_j \sigma_i\right)\right) = \\ &= \sum_{ij} a_i b_j \left(\frac{1}{2} \left\{\sigma_i, \sigma_j\right\} + \frac{1}{2} \left[\sigma_i, \sigma_j\right]\right) = \sum_{ij} a_i b_j \left(\delta_{ij} + \mathrm{i}\varepsilon_{ijk}\sigma_k\right) = (\vec{a}\vec{b})I + \mathrm{i}\left(\vec{a}\times\vec{b}\right)\vec{\sigma} \end{split}$$

8.5. Из результата предыдущей задачи следует, что для единичного вектора \vec{n} квадрат $(\vec{n}\vec{\sigma})$ равен единичной матрице $I:(\vec{n}\vec{\sigma})^2=I$, откуда следует: $(\vec{n}\vec{\sigma})^{2k}=I$ и $(\vec{n}\vec{\sigma})^{2k+1}=(\vec{n}\vec{\sigma})$.

Подставляя эти результаты в разложение функции $f(\vec{n}\vec{\sigma}x)$ в ряд Тейлора, имеем

$$f(\vec{n}\vec{\sigma}x) = \sum_{k=0}^{\infty} f^{(k)} \frac{(\vec{n}\vec{\sigma})^k x^k}{k!} \equiv \sum_{l=0}^{\infty} f^{(2l)} \frac{(\vec{n}\vec{\sigma})^{2l} x^{2l}}{(2l)!} + \sum_{l=0}^{\infty} f^{(2l+1)} \frac{(\vec{n}\vec{\sigma})^{2l+1} x^{2l+1}}{(2l+1)!} =$$

$$= I \sum_{l=0}^{\infty} f^{(2l)} \frac{x^{2l}}{(2l)!} + (\vec{n}\vec{\sigma}) \sum_{l=0}^{\infty} f^{(2l+1)} \frac{x^{2l+1}}{(2l+1)!} = \frac{1}{2} [f(x) + f(-x)] I + \frac{1}{2} [f(x) - f(-x)] (\vec{n}\vec{\sigma})$$

8.6. Используя определение оператора конечного поворота (1.8.8), имеем

$$U = \begin{pmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{pmatrix} \text{ и } \psi' \equiv U \psi = \begin{pmatrix} \alpha e^{i\phi/2} \\ \beta e^{-i\phi/2} \end{pmatrix}.$$
8.7. (a) $U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}, \quad \psi' = U \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}; \quad \text{(6)} \quad U = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \psi' = U \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix}.$

8.8. Выберем в спинорном пространстве в качестве элементов нового базиса исходный спинор $\psi_1 = \psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ и ортогональный к нему спинор $\psi_2 = \begin{pmatrix} -\beta^* \\ \alpha^* \end{pmatrix}$. Построим матрицу $U = \begin{pmatrix} \alpha^* & \beta^* \\ -\beta & \alpha \end{pmatrix}$, взяв в качестве верхней и нижней строки эрмитово сопряженные спиноры $(\psi_1)^+ = (\alpha^*, \beta^*)$ и $(\psi_2)^+ = (-\beta, \alpha)$. Легко убедиться, что полученная матрица унитарна: $UU^+ = U^+U = I$ (где I — единичная матрица) и обеспечивает искомое преобразование: $U\psi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Используя формулу (1.8.5), матрицу U можно представить также в «стандартном» виде, как поворот вокруг оси \vec{n} на угол ϕ : $U = I \cos \frac{\phi}{2} + \mathrm{i}(\vec{n}\vec{\sigma}) \sin \frac{\phi}{2}$, где:

$$\cos\frac{\varphi}{2} = \frac{1}{2}\operatorname{Tr} U = \operatorname{Re}\alpha, \ \varphi = 2\arccos\left(\operatorname{Re}\alpha\right), \ \sin\frac{\varphi}{2} = \sqrt{1 - \left(\operatorname{Re}\alpha\right)^2},$$
$$\vec{n} = \frac{1}{2\mathrm{i}\sin(\varphi/2)}\operatorname{Tr} U\vec{\sigma} = \left(-\operatorname{Im}\beta, \operatorname{Re}\beta, -\operatorname{Im}\alpha\right) / \sqrt{1 - \left(\operatorname{Re}\alpha\right)^2}.$$

- 8.3. Уравнение Паули, спин в магнитном поле.
- **8.9.** Уравнение Шредингера для спиновой волновой функции электрона в постоянном магнитном поле, направленном вдоль оси *z*, имеет вид

$$i\hbar \frac{\partial \psi}{\partial t} = \mu_B B \sigma_z \psi, \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}.$$

Решение этого уравнения: $\psi(t) = \exp(-\mathrm{i}\mu_B B \sigma_z t / \hbar) \psi(0)$. Записывая это решение как $\psi(t) = \exp(-\mathrm{i}\sigma_z \phi(t) / 2) \psi(0)$, видим, что оно описывает поворот спина вокруг оси z на угол $\phi(t) = \Omega t$ (прецессию спина) с частотой прецессии $\Omega = 2\mu_B B / \hbar$.

В случае, если величина магнитного поля зависит от времени как $\vec{B} = (0,0,B_Z(t))$, угол поворота спина равен $\phi(t) = \left(2\mu_B \, / \, \hbar\right) \int\limits_0^t B(t') \mathrm{d}t'$.

8.10. Запишем уравнение Шредингера в переменном магнитном поле, где $\vec{B} = (B_{\perp} \cos \omega t, B_{\perp} \sin \omega t, B_0)$:

$$i\hbar \frac{\partial \psi}{\partial t} = \mu_B \vec{B}(t) \vec{\sigma} \psi, \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}.$$

Расписывая его покомпонентно, получим систему уравнений

$$\begin{cases} \dot{\psi}_1 = -\frac{i}{2}\Omega_0 \left(\psi_1 + b e^{-i\omega t} \psi_2 \right) \\ \dot{\psi}_2 = -\frac{i}{2}\Omega_0 \left(b e^{i\omega t} \psi_1 - \psi_2 \right) \end{cases},$$

где $\Omega_0 = 2\mu_B \, B_0/\hbar$ — частота прецессии в постоянном поле B_0 , $b = B_\perp/B_0 \ll 1$. Перейдем в систему координат, вращающихся вместе с полем B_\perp . Во вращающейся системе координат волновая функция $\psi \to \phi = \exp(i\sigma_z \omega t/2) \psi$, зависимость магнитного поля от времени исчезает, и мы получаем систему дифференциальных уравнений с постоянными коэффициентами:

$$\begin{cases} \dot{\phi_1} = \frac{\mathrm{i}}{2}(\omega - \Omega_0)\phi_1 - \frac{\mathrm{i}}{2}b\Omega_0\phi_2 \\ \dot{\phi_2} = -\frac{\mathrm{i}}{2}b\Omega_0\phi_1 - \frac{\mathrm{i}}{2}(\omega - \Omega_0)\phi_2 \end{cases}$$

Ищем решение в виде $\phi_{1,2} = c_{1,2} \exp(-i\overline{\omega}t)$, что дает систему однородных линейных дифференциальных уравнений с нулевой правой частью:

$$\begin{cases} c_1[(\omega-\Omega_0)+2\overline{\omega}]+c_2b\Omega_0=0\\ c_1b\Omega_0+c_2[(\omega-\Omega_0)-2\overline{\omega}]=0 \end{cases}.$$

Приравняв к нулю детерминант этой системы, получим $\overline{\omega}_{1,2} = \pm \overline{\omega}$, где

$$\overline{\omega} = \frac{1}{2} \sqrt{(\omega - \Omega_0)^2 + b^2 \Omega_0^2}.$$

Общее решение во вращающейся системе координат

$$\phi = a_1 \exp(-i\overline{\omega}t) \left(\frac{1}{b\Omega_0} \right) + a_2 \exp(i\overline{\omega}t) \left(\frac{1}{b\Omega_0} \right) + a_2 \exp(i\overline{\omega}t) \left(\frac{b\Omega_0}{(\omega - \Omega_0) + 2\overline{\omega}} \right).$$

В неподвижной системе координат:

$$\begin{cases} \psi_1 = e^{-i\omega t/2} \left(a_1 \exp(-i\overline{\omega}t) + a_2 \exp(i\overline{\omega}t) \right), \\ \psi_2 = e^{i\omega t/2} \left(a_1 \exp(-i\overline{\omega}t) \frac{b\Omega_0}{(\omega - \Omega_0) - 2\overline{\omega}} + a_2 \exp(i\overline{\omega}t) \frac{b\Omega_0}{(\omega - \Omega_0) + 2\overline{\omega}} \right). \end{cases}$$

Одним из интересных случаев является резонанс при $\omega = \Omega_0$. Выбрав начальное состояние со спином вверх: $\psi_1 = 1$ и $\psi_2 = 0$, имеем $\psi = \begin{pmatrix} e^{-i\omega t/2}\cos\overline{\omega}t \\ e^{i\omega t/2}\sin\overline{\omega}t \end{pmatrix}$, т. е. спин переворачивается со сравнительно медленной *частотой Раби* $\overline{\omega} = b\Omega_0 \ll \Omega_0$.

9. Сложение моментов, волновые функции

9.1. Система двух спинов может находиться в *триплетном* состоянии с полным спином S=1 и *синглетном* состоянии с S=0. В триплетном состоянии спиновая волновая функция оказывается *четной* по отношению к перестановке спинов

$$|1,\pm 1\rangle = \left|\frac{1}{2},\pm\frac{1}{2}\right\rangle \left|\frac{1}{2},\pm\frac{1}{2}\right\rangle, \quad |1,0\rangle = \frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},\frac{1}{2}\right\rangle \left|\frac{1}{2},-\frac{1}{2}\right\rangle + \left|\frac{1}{2},-\frac{1}{2}\right\rangle \left|\frac{1}{2},\frac{1}{2}\right\rangle\right),$$

а в синглетном состоянии — нечетной: $|0,0\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle - \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle \right)$.

9.2. Для электрона с орбитальным моментом импульса l и спином $s=\frac{1}{2}$ полный момент импульса может принимать значения $j=l\pm\frac{1}{2}$. Для мультиплета с максимальным $j=l+\frac{1}{2}$ состояние с максимальной проекцией $j_z=l+\frac{1}{2}$ строится как

$$|j = l + \frac{1}{2}, j_z = l + \frac{1}{2}\rangle = |l, l\rangle |\frac{1}{2}, \frac{1}{2}\rangle.$$
 (2.9.1)

Действуя на левую и правую часть уравнения (2.9.1) понижающим оператором (1.9.6) $\hat{j}_- = \hat{l}_- + \hat{s}_-$, получим

$$\sqrt{2l+1} \left| j = l + \frac{1}{2}, j_z = l - \frac{1}{2} \right\rangle = \sqrt{2l} \left| l, l - 1 \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle + \left| l, l \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle.$$

Поделив на $\sqrt{2l+1}$, получим нормированный вектор состояния с проекцией j_z на единицу меньше максимальной:

$$|j = l + \frac{1}{2}, j_z = l - \frac{1}{2}\rangle = \sqrt{\frac{2l}{2l+1}}|l, l - 1\rangle|\frac{1}{2}, \frac{1}{2}\rangle + \frac{1}{\sqrt{2l+1}}|l, l\rangle|\frac{1}{2}, -\frac{1}{2}\rangle.$$
 (2.9.2)

Повторяя, построим все оставшиеся состояния мультиплета j=l+1/2, вплоть до $j_z=-(l+1/2)$.

Построение мультиплета с полным моментом j=l-1/2 так же начнем с состояния с *максимальной* его проекцией $j_z=l-\frac{1}{2}$, которое теперь строится, как ортогональное к уже построенному состоянию $\left|j=l+\frac{1}{2},j_z=l-\frac{1}{2}\right\rangle$:

$$|j = l - \frac{1}{2}, j_z = l - \frac{1}{2}\rangle = \frac{1}{\sqrt{2l+1}}|l, l - 1\rangle|\frac{1}{2}, \frac{1}{2}\rangle - \sqrt{\frac{2l}{2l+1}}|l, l\rangle|\frac{1}{2}, -\frac{1}{2}\rangle.$$
 (2.9.3)

Затем, с помощью понижающего оператора $\hat{j}_- = \hat{l}_- + \hat{s}_-$ строятся и остальные состояния этого мультиплета.

9.3. Возможные значения полного момента равны j = 0, 1, 2.

Для j = 2 имеем:

$$\begin{aligned} &|2,2\rangle = |1,1\rangle|1,1\rangle, \quad |2,1\rangle = \frac{1}{\sqrt{2}} \big(|1,0\rangle|1,1\rangle + |1,1\rangle|1,0\rangle \big), \\ &|2,0\rangle = \frac{1}{\sqrt{6}} \big(|1,-1\rangle|1,1\rangle + 2|1,0\rangle|1,0\rangle + |1,1\rangle|1,-1\rangle \big), \\ &|2,-2\rangle = |1,-1\rangle|1,-1\rangle, \quad |2,-1\rangle = \frac{1}{\sqrt{2}} \big(|1,0\rangle|1,-1\rangle + |1,-1\rangle|1,0\rangle \big). \end{aligned}$$

Для j = 1:

$$|1,1\rangle = \frac{1}{\sqrt{2}} (|1,0\rangle |1,1\rangle - |1,1\rangle |1,0\rangle), \quad |1,0\rangle = \frac{1}{\sqrt{2}} (|1,-1\rangle |1,1\rangle - |1,1\rangle |1,-1\rangle), |1,-1\rangle = \frac{1}{\sqrt{2}} (|1,-1\rangle |1,0\rangle - |1,0\rangle |1,-1\rangle).$$

Для j=0:

$$|0,0\rangle = \frac{1}{\sqrt{3}} (|1,-1\rangle|1,1\rangle - 2|1,0\rangle|1,0\rangle + |1,1\rangle|1,-1\rangle).$$

10. Тождественные частицы

- **10.1.** Четность волновой функции при перестановке двух тождественных бозонов со спином 0 и орбитальным моментом l равна $(-1)^l = 1$, откуда l = 2k, где $k = 0, 1, 2, \ldots$
- **10.2.** Четность полной волновой функции при перестановке двух тождественных бозонов со спином 1 и орбитальным моментом l равна $(-1)^{l+S}=1$, где четность спиновой волновой функции выражается через суммарный спин S как $(-1)^S$ (см. результаты задачи 9.3). Отсюда, допустимые значения орбитального момента l равны: при S=0,2 четные: l=2k, при S=1 нечетные: l=2k+1, k=0,1,2,... **10.3.** Четность полной волновой функции при перестановке двух тождественных фермионов со спином s=1/2 и орбитальным моментом l равна $(-1)^{l+S+1}=-1$, где четность спиновой волновой функции выражается через суммарный спин S как $(-1)^{S+1}$, (см. результаты задачи 9.1). Отсюда, в синглетном состоянии (S=0) допустимые l=2k, в триплетном состоянии (S=1) допустимые l=2k+1, где k=0,1,2,...

11. Теория возмущений

11.1. Стационарное возмущение

11.1. Представим оператор возмущения в виде $\hat{V} = \alpha \hat{x} = \alpha \frac{x_0}{\sqrt{2}} (\hat{a} + \hat{a}^+)$, где параметр $x_0 = \sqrt{\hbar / m \omega}$. В первом порядке теории возмущений поправка равна нулю: $E_n^{(1)} = \langle n | \hat{V} | n \rangle = \alpha \frac{x_0}{\sqrt{2}} \langle n | \hat{a} + \hat{a}^+ | n \rangle = 0$. Во втором порядке:

$$E_n^{(2)} = \sum_{k \neq n}^{\infty} \frac{\left| \langle k | \hat{V} | n \rangle \right|^2}{E_n^{(0)} - E_k^{(0)}} = \alpha^2 \frac{x_0^2}{2} \left(\frac{\left| \langle n - 1 | \hat{a} | n \rangle \right|^2}{E_n^{(0)} - E_{n-1}^{(0)}} + \frac{\left| \langle n + 1 | \hat{a}^+ | n \rangle \right|^2}{E_n^{(0)} - E_{n-1}^{(0)}} \right) = \alpha^2 \frac{x_0^2}{2} \left(\frac{n}{\hbar \omega} - \frac{n+1}{\hbar \omega} \right) = -\frac{\alpha^2}{2m\omega^2}.$$

Рассматриваемое возмущение приводит к смещению по координате x положения минимума потенциальной энергии U(x) с одновременным *понижением* значения в минимуме на величину $\Delta U = \frac{\alpha^2}{2mo^2}$:

$$U(x) = \frac{m\omega^2}{2}x^2 - \alpha x = \frac{m\omega^2}{2}\left(x - \frac{\alpha}{m\omega}\right)^2 - \frac{\alpha^2}{2m\omega^2}.$$

11.2. (а) Представляя оператор возмущения через операторы рождения и уничтожения $\hat{V} = \beta \hat{x}^3 = 2^{-3/2} \beta x_0^3 (\hat{a} + \hat{a}^+)^3$, видим, что в *первом* порядке $E_n^{(1)} = \langle n | \hat{V} | n \rangle = 0$.

Во втором порядке
$$E_n^{(2)} = \sum_{k \neq n} \frac{\left| \langle k | \hat{V} | n \rangle \right|^2}{E_n^{(0)} - E_k^{(0)}} = \frac{\beta^2 x_0^6}{2^3 \hbar \omega} \sum_{k \neq n} \frac{\left| \langle k | (\hat{a} + \hat{a}^+)^3 | n \rangle \right|^2}{n - k}$$
.

Матричные элементы оператора \hat{V} отличны от нуля при $k = n \pm 1, n \pm 3$:

$$\left| \left\langle n+3 \right| (\hat{a}+\hat{a}^{+})^{3} \left| n \right\rangle \right|^{2} = (n+3)(n+2)(n+1), \quad \left| \left\langle n-3 \right| (\hat{a}+\hat{a}^{+})^{3} \left| n \right\rangle \right|^{2} = (n-2)(n-1)n,$$
$$\left| \left\langle n+1 \right| (\hat{a}+\hat{a}^{+})^{3} \left| n \right\rangle \right|^{2} = 9(n+1)^{3}, \quad \left| \left\langle n-1 \right| (\hat{a}+\hat{a}^{+})^{3} \left| n \right\rangle \right|^{2} = 9n^{3}.$$

Их подстановка в сумму дает $E_n^{(2)} = -\frac{3\beta^2 x_0^6}{8\hbar\omega} (2n^2 + 2n + 1) = -\frac{3\beta^2 \hbar^2}{8m^3\omega^4} (2n^2 + 2n + 1)$.

(б) Представим $\hat{V} = \gamma \hat{x}^4 = 2^{-2} \gamma x_0^4 (\hat{a} + \hat{a}^+)^4$. В этом случае результат отличен от нуля уже в первом порядке:

$$E_n^{(1)} = \langle n | \hat{V} | n \rangle = \frac{1}{4} \gamma x_0^4 \langle n | (\hat{a} + \hat{a}^+)^4 | n \rangle = \frac{3}{4} \gamma x_0^4 (2n^2 + 2n + 1) = \frac{3}{4} \gamma \left(\frac{\hbar}{m\omega} \right)^2.$$

11.3. Используя гамильтониан атома водорода $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} - \frac{e^2}{r}$, представим оператор возмущения в виде $\hat{V} = -\frac{\hat{\vec{p}}^4}{8m^3c^2} = -\frac{1}{8m^3c^2} \left(2m\right)^2 \left(\frac{\hat{\vec{p}}^2}{2m}\right)^2 = -\frac{1}{2mc^2} \left(\hat{H} + \frac{e^2}{r}\right)^2$.

В первом порядке теории возмущений

$$E^{(1)} = -\frac{1}{2mc^{2}} \langle 1S | \left(\hat{H} + \frac{e^{2}}{r} \right)^{2} | 1S \rangle = -\frac{1}{2mc^{2}} \langle 1S | \left(E_{1} + \frac{e^{2}}{r} \right)^{2} | 1S \rangle =$$

$$= -\alpha^{2} \text{Ry} \langle 1S | \left(\frac{a_{B}}{r} - \frac{1}{2} \right)^{2} | 1S \rangle = -\alpha^{2} \text{Ry} \int d^{3}r | \Psi_{100}(r, \theta, \varphi) |^{2} \left(\frac{a_{B}}{r} - \frac{1}{2} \right)^{2} = -\frac{5}{4} \alpha^{2} \text{Ry}.$$

Здесь $a_B = \hbar^2 / me^2$, $\mathrm{Ry} = me^4 / 2\hbar^2$, $\alpha = e^2 / hc \approx 1/137$ — постоянная тонкой структуры, энергия основного состояния атома водорода $E_1 = -\mathrm{Ry}$ и волновая функция $\Psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi}} \exp(-\frac{r}{a_B})$.

11.4. В дипольном приближении оператор возмущения $\hat{V} = -\hat{\vec{d}}\vec{\mathcal{E}} = -e\hat{\vec{r}}\vec{\mathcal{E}}$. В силу симметрии основного состояния $\Delta E_1^{(1)} = \langle 1S|\hat{V}|1S\rangle = -e\vec{\mathcal{E}}\langle 1S|\hat{\vec{r}}|1S\rangle = 0$. Выбирая ось $\vec{z} \parallel \vec{\mathcal{E}}$, поправку к энергии во втором порядке запишем, как

$$\Delta E_1^{(2)} = \sum_{n \neq 1} \frac{\left| \langle n | \hat{V} | 1 \rangle \right|^2}{E_1^{(0)} - E_n^{(0)}} = e^2 \mathcal{E}^2 \sum_{n \neq 1} \frac{\left| \langle n | z | 1 \rangle \right|^2}{E_1^{(0)} - E_n^{(0)}} = -\frac{1}{2} \alpha \mathcal{E}^2,$$

где поляризуемость $\alpha = 2e^2 \sum_{n \neq 1} \frac{\left| \langle n|z|1 \rangle \right|^2}{E_n^{(0)} - E_1^{(0)}} = a_B^3 \beta$. Точный расчет, включающий «честное» суммирование по всем n , дает $\beta \simeq 4,4$.

Для оценки *снизу* заменим в знаменателе разность энергий в знаменателе на ее *максимальное* значение: $\left(E_n^{(0)}-E_1^{(0)}\right) \to -E_1^{(0)}$. Тогда, используя условие полноты $\sum_n |n\rangle\langle n|=1$, получим оценку (*метод правила сумм*):

$$\alpha = 2e^2 \sum_{n \neq 1} \frac{\left| \langle n|z|1 \rangle \right|^2}{E_n^{(0)} - E_1^{(0)}} \ge 2e^2 \frac{1}{-E_1^{(0)}} \sum_{n} \langle 1|z|n \rangle \langle n|z|1 \rangle = \frac{4}{3} \langle 1|r^2|1 \rangle a_B = 4a_B^3,$$

что соответствует $\beta=4$. Аналогичным образом, заменяя разность энергий в знаменателе на ее *минимальное* значение $\left(E_n^{(0)}-E_1^{(0)}\right) \to \left(E_2^{(0)}-E_1^{(0)}\right)$, получим оценку *сверху*:

$$\alpha = 2e^2 \sum_{n \neq 1} \frac{\left| \langle n|z|1 \rangle \right|^2}{E_n^{(0)} - E_1^{(0)}} \le 2e^2 \frac{1}{E_2^{(0)} - E_1^{(0)}} \sum_{n} \langle 1|z|n \rangle \langle n|z|1 \rangle = \frac{16}{9} \langle 1|r^2|1 \rangle a_B \approx 5,33a_B^3.$$

11.5. Выберем ось $\vec{z} \parallel \vec{\mathcal{E}}$ и выпишем матричные элементы оператора возмущения между состояниями $|2S\rangle$ $(n=2,\ l=0,\ m=0)$ и $|2P\rangle$ $(n=2,\ l=1,\ m=0)$:

$$\begin{split} V_{11} &= \left<2S \middle| \Delta E_{SP} - \hat{d}_z \mathcal{E} \middle| 2S \right> = \Delta E_{SP}, \qquad V_{22} = \left<2P \middle| - \hat{d}_z \mathcal{E} \middle| 2P \right> = 0, \\ V_{12} &= V_{21}^* = \left<2S \middle| - \hat{d}_z \mathcal{E} \middle| 2P \right> = -e \int r^2 \mathrm{d} \, r \, R_{20}(r) r R_{21}(r) \int \mathrm{d} \Omega Y_{00}^*(\theta, \phi) \cos \theta Y_{10}(\theta, \phi) = -3e a_B \mathcal{E}. \end{split}$$
 Решая секулярное уравнение $\det \left| V_{nm} - E \delta_{nm} \right| = -\left(\Delta E_{SP} - E\right) E - 9e^2 a_B^2 \mathcal{E}^2 = 0,$ найдем энергию возмущенных стационарных состояний

$$E_{\pm}(\mathcal{E}) = \frac{1}{2} \left(\Delta E_{SP} \pm \sqrt{\left(\Delta E_{SP} \right)^2 + 9e^2 a_B^2 \mathcal{E}^2} \right)$$

со средним наведенным электрическим дипольным моментом

$$\langle d_z \rangle = -\frac{\partial}{\partial \mathcal{E}} E_{\pm} = \mp 9e^2 a_B^2 \mathcal{E} / \sqrt{(\Delta E_{S-P})^2 + 9e^2 a_B^2 \mathcal{E}^2}$$
.

При слабых полях ($\mathcal{E} \ll \Delta E_{SP} / ea_B$) имеем эффект Штарка, *квадратичный* по приложенному полю \mathcal{E} , а при сильных полях ($\mathcal{E} \gg \Delta E_{SP} / ea_B$) — эффект Штарка, *линейный* по приложенному полю \mathcal{E} .

11.6. Гамильтониан спина электрона в магнитном поле имеет вид $\hat{H} = \mu_B \vec{\sigma} \vec{B}$, где магнитное поле $\vec{B} = (B_x, 0, B_z)$, $B_z = B_0 \gg B_x$ и μ_B — магнетон Бора. Решая уравнение Шредингера $\hat{H}\psi = E\psi$, найдем стационарные состояния:

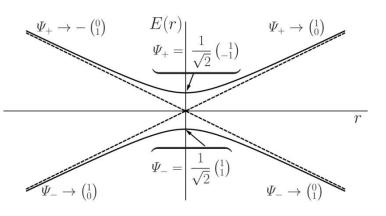
$$\begin{split} E_{\pm}(r) &= \pm \mu_B \sqrt{B_x^2 + B_z^2} = \pm \mu_B B_x \sqrt{1 + r^2} \,, \\ \Psi_{\pm}(r) &= \frac{1}{\sqrt{2}} \frac{1}{\left(1 + r^2\right)^{1/4} \left(\sqrt{1 + r^2} \mp r\right)^{1/2}} \binom{1}{0} \mp \frac{1}{\sqrt{2}} \frac{\left(\sqrt{1 + r^2} \mp r\right)^{1/2}}{\left(1 + r^2\right)^{1/4}} \binom{0}{1} \,, \end{split}$$

здесь $r \equiv B_{\chi} / B_{\chi}$, причем

$$(-r_0 \le r \le r_0)$$
, и $r_0 = B_0 / B_x \gg 1$.

При $B_\chi \neq 0$ уровни $E_\pm(r)$

не пересекаются, сближаясь при r=0 на минимальное расстояние $E_{+}(0)-E_{-}(0)=2\mu_{B}B_{x}$



(явление *«расталкивания уровней»*), а вектор спина следует за направлением суммарного поля $\vec{B}_z + \vec{B}_x$, оставаясь направленным в каждом из состояний $\Psi_\pm(r)$ либо по полю, либо против поля. При $B_x \equiv 0$ картина иная: направление спина неизменно — вдоль оси \vec{z} , энергия каждого из стационарных состояний равна $E_\pm = \pm \mu_B B_z$, и при изменении поля B_z от B_0 до $-B_0$ уровни пересекаются в точке $B_z = 0$.

11.7. Среднее значение вектора магнитного момента направлено вдоль вектора полного момента $\langle \vec{j} \rangle$: $\langle \hat{\vec{m}} \rangle = \mu_B \langle (\hat{\vec{l}} + 2\hat{\vec{s}}) \rangle = \mu_B \langle (\hat{\vec{j}} + \hat{\vec{s}}) \rangle \equiv g \, \mu_B \langle \hat{\vec{j}} \rangle$. Умножая $\langle \hat{\vec{m}} \rangle$ скалярно на $\langle \vec{j} \rangle$, получим фактор Ланде

$$g = \frac{\left\langle \hat{\vec{j}}^2 \right\rangle + \left\langle \hat{\vec{j}} \hat{\vec{s}} \right\rangle}{\left\langle \hat{\vec{j}}^2 \right\rangle} = \frac{\left\langle \hat{\vec{j}}^2 \right\rangle + \frac{1}{2} \left\langle \hat{\vec{j}}^2 + \hat{\vec{s}}^2 - \hat{\vec{l}}^2 \right\rangle}{\left\langle \hat{\vec{j}}^2 \right\rangle} = \frac{3}{2} + \frac{s(s+1) - l(l+1)}{2j(j+1)},$$

где использовано $\hat{\vec{l}}^2 = (\hat{\vec{j}} - \hat{\vec{s}})^2 = \hat{\vec{j}}^2 + \hat{\vec{s}}^2 - 2\hat{\vec{j}}\,\hat{\vec{s}}$ и усреднение производится по состояниям $|j,m,l,s\rangle$. Для 2P состояний с l=1 получим g=2/3 при j=1/2 и g=4/3 при j=3/2.

11.8. Оператор *магнитного* взаимодействия спина атомного электрона с электрическим полем ядра, движущегося в атоме водорода относительно ядра со скоростью $\hat{\vec{v}} = \hat{\vec{p}} / m$ (за счет *релятивистских* эффектов), равен:

$$\hat{V}_{LS} = 2\mu_B \hat{\vec{s}} \vec{B} = 2\mu_B \hat{\vec{s}} \left(\frac{\hat{\vec{v}}}{c} \times \vec{E} \right) = 2\mu_B \hat{\vec{s}} \frac{e}{mcr^3} \left(\hat{\vec{p}} \times \vec{r} \right) = -4(\mu_B)^2 \frac{1}{r^3} \hat{\vec{s}} \hat{\vec{l}}.$$

Учет томасовской прецессии (J. Tomac, 1926) уменьшает этот эффект вдвое. Используя операторное соотношение $\hat{\vec{j}}^2 = (\hat{\vec{l}} + \hat{\vec{s}})^2 = \hat{\vec{l}}^2 + \hat{\vec{s}}^2 + 2\hat{\vec{s}}\hat{\vec{l}}$, имеем поправку к энергии, зависящую от полного момента j (известную как *тонкая структура* атомного спектра):

$$\Delta E_{LS} = -\langle n, j, m, l, s | (\mu_B)^2 \frac{1}{r^3} (\hat{j}^2 - \hat{l}^2 - \hat{s}^2) | n, j, m, l, s \rangle =$$

$$= -(\mu_B)^2 (j(j+1) - l(l+1) - s(s+1)) \int r^2 dr \, R_{nl}^2(r) \frac{1}{r^3}.$$

Для n=2, l=1, подставляя $R_{21}(r)=\frac{1}{2\sqrt{6a_B^5}}\exp(-r/a_B)$, приходим к ответу

$$\Delta E_{LS} = -\frac{1}{24} \left(j(j+1) - 2\frac{3}{4} \right) (\mu_B)^2.$$

11.9. В пределе слабых полей (эффект Зеемана) $\Delta E = -g \, \mu_B j_z B$, где $-j \leq j_z \leq j$. При j=1/2 и 3/2 имеем $g_L=2/3$ и 4/3 (см. задачу 11.7).

В пределе сильных полей (эффект Пашена – Бака) $\Delta E = \mu_B (l_z + 2s_z)$.

- 11.2. Возмущение, зависящее от времени.
- **11.10.** В начальный момент волновая функция электрона в основном состоянии трития $\psi_{1S} = (\pi a_B^3)^{-1/2} \exp(-r/a_B)$. В результате β -распада ядра трития заряд ядра мгновенно удваивается, и волновая функция *нового* основного состояния электрона *для иона гелия*, имеет вид $\tilde{\psi}_{1S} = (\pi a^3)^{-1/2} \exp(-r/a)$, где $a = a_B/2$. Вероятность, что электрон останется в *новом* основном состоянии для *иона гелия*, равна $w = \left| \int dV \left(\tilde{\psi}_{1S} \right)^* \psi_{1S} \right|^2 = \frac{2^9}{3^6} \approx 0,7$.
- **11.11.** Начальная волновая функция связанного состояния: $\psi_1 = \sqrt{\kappa} \exp(-\kappa |x|)$, конечная: $\psi_2 = \sqrt{2\kappa} \exp(-2\kappa |x|)$, где $\kappa = mG/\hbar^2$. Вероятность «ионизации» равна

$$w = 1 - \left| \int dx (\psi_2)^* \psi_1 \right|^2 = 1 - \frac{8}{9} = \frac{1}{9}$$
.

11.12. Предполагая, что $\vec{\mathcal{E}}(t) \parallel \vec{z}$, запишем амплитуду перехода из состояния $|i\rangle = |1S\rangle$ в состояние $|f\rangle = |2P, l_z = 0\rangle$, как

$$a_{fi} = -\frac{i}{\hbar} \int_{-\infty}^{\infty} (d_z)_{fi} \frac{\mathcal{E}_0}{1 + (t/\tau)^2} e^{i\omega_{fi}t} dt = \frac{\pi}{\hbar} \mathcal{E}_0(d_z)_{fi} e^{-\omega_{fi}\tau} = -\frac{3\pi}{\hbar} e a_B \mathcal{E}_0 e^{-3Ry\tau/4\hbar},$$

где матричный элемент дипольного момента $(d_z)_{fi}=-3ea_B$ (см. задачу 11.5), $\omega_{fi}=\frac{_3}{^4}\mathrm{Ry}/\hbar\,.$ Вероятность перехода $w_{fi}=|a_{fi}|^2=9(ea_B\mathcal{E}_0/\hbar)^2\mathrm{e}^{-3\mathrm{Ry}\;\tau/2\hbar}\,.$

11.13. Поскольку при $t\to\infty$ возмущение остается конечным, вероятность перехода определяется производной возмущения $V_{n\pm 1,n}$ по времени (см. формулу (1.11.12)):

$$w_{n\pm 1,n} = \frac{1}{\hbar^2 \omega_{n\pm 1,n}^2} \left| \int_{-\infty}^{\infty} \frac{dV_{n\pm 1,n}(t)}{dt} e^{i\omega_{n\pm 1,n}t} dt \right|^2 = \frac{1}{\hbar^2 \omega_{n\pm 1,n}^2} \left| \int_{-\infty}^{\infty} \alpha \frac{x_0}{\sqrt{2}} \langle n \pm 1 | (\hat{a} + \hat{a}^+) | n \rangle \frac{e^{\pm i\omega_{n\pm 1,n}t}}{\tau (1 + (t/\tau)^2)} dt \right|^2.$$

Выполнив интегрирование по времени, с учетом соотношений (1.5.19), получим:

$$w_{n-1,n} = \frac{\pi^2 \alpha^2 x_0^2 e^{-2|\omega_{n-1,n}|^{\tau}}}{2\hbar^2 \omega_{n-1,n}^2} n, \quad w_{n+1,n} = \frac{\pi^2 \alpha^2 x_0^2 e^{-2|\omega_{n+1,n}|^{\tau}}}{2\hbar^2 \omega_{n+1,n}^2} (n+1) .$$

11.3. Переходы под воздействием периодического возмущения

11.14. В соответствии с *золотым правилом Ферми* (1.11.13), вероятность радиационного перехода осциллятора из начального состояния $|i\rangle = |n\rangle_{\rm осц} |0\rangle_{\rm ф}$ в конечное состояние $|f\rangle = |n-1\rangle_{\rm осц} |1_{\vec k,\omega}\rangle_{\rm \phi}$, где $\vec k$ и ω – волновой вектор и частота испускаемого фотона, записывается как

$$d\dot{w}_{fi} = \frac{2\pi}{\hbar} |V_{fi}^{0}|^{2} \delta(E_{n-1} + \hbar\omega - E_{n}) \frac{Vd^{3}k}{(2\pi)^{3}}, \qquad (2.11.1)$$

где матричный элемент V_{fi}^0 оператора дипольного взаимодействия осциллятора с излучаемым фотоном, который с учетом формул (1.11.14) для *квантованного* электромагнитного поля равен

$$V_{fi}^{0} = \left\langle n - 1 \middle| \vec{d} \middle| n \right\rangle_{\text{OCII}} \left\langle 1 \middle| \hat{\vec{\mathcal{E}}}_{\omega,\vec{k},\lambda} \middle| 0 \right\rangle_{\Phi} = \sqrt{n} e \sqrt{\frac{\hbar}{2m\omega_0}} \left(\vec{\mathbf{e}}_{\lambda} \right)_z \sqrt{\frac{\hbar\omega}{V}} = e\hbar \sqrt{\frac{n\omega}{2m\omega_0 V}} \sin\theta \,.$$

Здесь ось z выбрана вдоль направления дипольного момента \vec{d} электрона в осцилляторе, θ — угол между осью z и вектором \vec{k} , $\left(\vec{e}_{\lambda}\right)_z$ — проекция вектора поляризации фотона \vec{e}_{λ} на дипольный момент \vec{d} . Из двух возможных поляризаций λ =1,2 в матричный элемент V_{fi}^0 ненулевой вклад $\left(\vec{e}_{\lambda}\right)_z$ = $\sin\theta$ дает лишь одна из них — с вектором \vec{e}_1 , лежащим в плоскости векторов \vec{d} и \vec{k} . Вклад второй поляризации с $\vec{e}_2 \perp \vec{e}_1$ равен нулю, т.к. $\vec{e}_2 \perp \vec{d}$. Подставляя V_{fi}^0 в (2.11.1) и интегрируя результат по частоте и углам вылета фотона, для вероятности перехода в единицу времени получим $\dot{w}_{fi} = \frac{ne^2\omega_0^2}{3\pi mc^3}$.

11.15. Оператор дипольного взаимодействия атома с электрическим полем излучаемого фотона равен $\hat{V} = -\hat{\vec{d}}\hat{\vec{\mathcal{E}}}$. Вероятность радиационного перехода атома, проинтегрированная по всем направлениям вылета фотона, не зависит от начального направления орбитального момента \vec{l} . Для определенности положим, что начальное состояние атома $|2P\rangle \equiv |n=2, l=1, l_z=0\rangle$. Матричный элемент V_{fi}^0 для элек-

трического дипольного (E1) перехода атома водорода из начального состояния $|i\rangle = |2P\rangle_{\rm ar}|0\rangle_{\Phi}$ в конечное состояние $|f\rangle = |1S\rangle_{\rm ar}|1_{\vec k,\omega}\rangle_{\Phi}$ в таком случае равен

$$V_{fi}^{0} = \left\langle 1S \left| \vec{d} \left| 2P \right\rangle_{\text{atom}} \left\langle 1 \right| \hat{\vec{\mathcal{E}}}_{\omega,\vec{k}} \left| 0 \right\rangle_{\Phi} = -3ea_{B} \left(\vec{\mathbf{e}} \right)_{z} \sqrt{\frac{\hbar \omega}{V}} = -3ea_{B} \sqrt{\frac{\hbar \omega}{V}} \sin \theta \,.$$

Подставив матричный элемент атома водорода V_{fi}^0 в формулу (2.11.1), полученную ранее для осциллятора, и проинтегрировав результат по частотам и углам вылета фотона, получим искомую вероятность перехода

$$\dot{w}_{fi} = \frac{3^4}{2^8} \frac{me^{10}}{\pi c^3 \hbar^5} = \frac{3^4}{2^8 \pi} \left(\frac{e^2}{\hbar c}\right)^3 \frac{me^4}{\hbar^3} = \frac{3^4 \alpha^3}{2^8 \pi} \frac{me^4}{\hbar^3} \approx 3.9 \cdot 10^9 \text{ cek}^{-1},$$

где комбинация $\alpha \equiv e^2 / \hbar c \approx 1/137$ известна как *постоянная тонкой структуры*. **11.16.** Взаимодействие магнитного момента спина $\vec{\mu} = \mu_B \vec{\sigma}$ с *квантованным магнитным полем* фотона $\hat{\vec{\mathcal{B}}}_{\omega,\vec{k},\lambda}$ (см. определение, данное в (1.11.14)) описывается оператором $\hat{V} = -\mu_B \vec{\sigma} \ \hat{\vec{\mathcal{B}}}_{\omega,\vec{k},\lambda}$. Найдем матричный элемент оператора \hat{V} между начальным состоянием $|i\rangle = |\uparrow\rangle |0\rangle_{\Phi}$ с $s_z = \frac{1}{2}$, и конечным состоянием $|i\rangle = |\downarrow\rangle |1\rangle_{\Phi}$ с $s_z = -\frac{1}{2}$ и излученным фотоном:

$$\begin{split} V_{fi}^0 &= -\frac{1}{2} \mu_B \left\langle \downarrow \middle| \vec{\sigma} \middle| \uparrow \right\rangle_{\text{СПИН}} \left\langle 1 \middle| \hat{\vec{\mathcal{B}}}_{\omega,\vec{k},\lambda} \middle| 0 \right\rangle_{\Phi} = -\frac{1}{2} \mu_B \sqrt{\frac{\hbar \omega}{V}} \left\langle \downarrow \middle| \vec{\sigma} \vec{b}_{\lambda}^* \middle| \uparrow \right\rangle_{\text{СПИН}} \left\langle 1 \middle| (\hat{a}_{\vec{k},\lambda}^+)_+ \middle| 0 \right\rangle_{\Phi} = \\ &= -\frac{1}{2} \mu_B \sqrt{\frac{\hbar \omega}{V}} \left\langle \downarrow \middle| \sigma_z(b_{\lambda}^*)_z + \frac{1}{2} \Big(\sigma_-(b_{\lambda}^*)_+ + \sigma_+(b_{\lambda}^*)_- \Big) \middle| \uparrow \right\rangle_{\text{СПИН}} = -\frac{1}{2} \mu_B \sqrt{\frac{\hbar \omega}{V}} (\vec{b}_{\lambda})_+ \,. \end{split}$$

Единичный вектор $\vec{n} = \vec{k} / k$ определяет направление вылета фотона, а векторы $\vec{b}_{\lambda} \equiv [\vec{n} \times \vec{e}_{\lambda}]$, где $\lambda = 1, 2$ задают поляризацию магнитного поля фотона. При вычислении в матричном элементе скалярного произведения $\vec{\sigma} \vec{b}_{\lambda}^*$ было использовано определение скалярного произведения векторов в так называемом циркулярном базисе $\vec{\sigma} \vec{b} = \sigma_z b_z + \frac{1}{2} (\sigma_+ b_- + \sigma_- b_+)$, где $\sigma_{\pm} = \sigma_x \pm i \sigma_y$ и $b_{\pm} = b_x \pm i b_y$.

Для вычисления $\left|V_{fi}^{0}\right|^{2}$ выберем в плоскости перпендикулярной вектору $\vec{k}=(\sin\theta\cos\phi,\sin\theta\sin\phi,\,\cos\theta)$ вектора поляризации фотона: $\vec{b_{1}}=(\sin\phi,-\cos\phi,0)$ и $\vec{b_{2}}=(\cos\theta\cos\phi,\cos\theta\sin\phi,-\sin\theta)$. Суммируя по поляризациям, получим

$$\left| V_{fi}^{0} \right|^{2} = \frac{1}{4} \sum_{\lambda=1,2} \mu_{B}^{2} \frac{\hbar \omega}{V} (\vec{b}_{\lambda})_{-} (\vec{b}_{\lambda})_{+} = \frac{1}{4} \sum_{\lambda=1,2} \mu_{B}^{2} \frac{\hbar \omega}{V} \left((\vec{b}_{\lambda})_{x}^{2} + (\vec{b}_{\lambda})_{y}^{2} \right) = \mu_{B}^{2} \frac{\hbar \omega}{4V} (1 + \cos^{2} \theta).$$

Подстановка в (2.11.1) и интегрирование по частоте и по углам вылета фотона приводит к вероятности радиационного перехода

$$\dot{w}_{fi} = \frac{\mu_B^2 \omega^3}{3\pi \hbar mc^3} = \frac{1}{48\pi} \alpha^3 \left(\frac{\hbar}{\text{Ry}}\right)^2 \omega^3 = \frac{1}{48\pi} \alpha^3 \left(\frac{\hbar}{\text{Ry}}\right)^2 \left(2\mu_B B_z\right)^3,$$

где $\omega = 2\mu_B B_z / \hbar$ — частота испущенного фотона. В частности, для магнитного поля $B_z = 10^4 \, \Gamma c \ (=1 \, \mathrm{Tr})$ частота фотона $\omega \simeq 1,76 \cdot 10^{11}$ рад/сек, а вероятность радиационного перехода составляет $\dot{w}_{fi} \approx 3,25 \cdot 10^{-8} \, \mathrm{c}^{-1}$, что дает «время жизни» $\tau \equiv 1/\dot{w}_{fi} \approx 350 \, \mathrm{cyt}$.

11.4. Рассеяние частиц на потенциале: приближение Борна.

11.17. Согласно формуле Борна (1.11.19) амплитуда упругого рассеяния на *то*-*чечном* потенциале $U(\vec{r}) = G\delta(\vec{r})$ равна $f(q) = -\frac{m}{2\pi\hbar^2} \int d^3r \, \mathrm{e}^{\mathrm{i}\vec{q}\,\vec{r}} \, G\delta(\vec{r}) = -\frac{mG}{2\pi\hbar^2}$. Примечательно, что она не зависит от переданного импульса $\vec{q} = \vec{k}' - \vec{k}$ и связанного с ним угла рассеяния $\theta: |\vec{q}| = 2k \sin{(\theta/2)}$. Дифференциальное сечение рассеяния $\frac{d\sigma}{d\Omega} = |f(q)|^2 = \left(\frac{mG}{2\pi\hbar^2}\right)^2$ изотропно, а полное сечение равно $\sigma = \frac{1}{\pi} \left(\frac{mG}{\hbar^2}\right)^2$.

11.18. Амплитуда рассеяния на потенциале $U(\vec{r}) = G(\delta(\vec{r} + \vec{a}) + \delta(\vec{r} - \vec{a}))$ в приближении Борна (1.11.19) равна *сумме амплитуд* на каждом из рассеивающих центров:

$$f(\vec{q}, \vec{a}) \equiv f(\vec{q}\vec{a}) = -\frac{m}{2\pi\hbar^2} \int d^3r e^{i\vec{q}\cdot\vec{r}} G(\delta(\vec{r} + \vec{a}) + \delta(\vec{r} - \vec{a})) = -\frac{mG}{\pi\hbar^2} \cos(\vec{q}\vec{a}).$$

Дифференциальное сечение, усредненное по направлениям вектора \vec{a} , равно:

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \left(\frac{mG}{\pi\hbar^2}\right)^2 \frac{1}{4\pi} \int \mathrm{d}\tilde{\varphi} \sin\tilde{\theta} \,\mathrm{d}\tilde{\theta} \cos^2(qa\cos\tilde{\theta}) = \left(\frac{mG}{\pi\hbar^2}\right)^2 \frac{1}{4} \int_{-1}^{1} \mathrm{d}\xi (1 + \cos(2qa\xi)) = \\ &= \frac{1}{2} \left(\frac{mG}{\pi\hbar^2}\right)^2 \left(1 + \frac{\sin(2qa)}{2qa}\right) = 2 \left(1 + \frac{\sin(2qa)}{2qa}\right) \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{(1)}, \end{split}$$

где $\frac{d\sigma}{d\Omega}^{(1)} \equiv \left(\frac{mG}{2\pi\hbar^2}\right)^2$ — сечение рассеяния на *одиночном* центре (см. задачу 11.17).

В пределе $qa\ll 1$ амплитуды рассеяния на двух центрах складываются когерентно, и сечение $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\approx\left(\frac{mG}{\pi\hbar^2}\right)^2=4\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{\scriptscriptstyle (1)}$. В противоположном пределе $qa\gg 1$ относительная фаза амплитуд случайна, и сечение $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\approx\frac{1}{2}\left(\frac{mG}{\pi\hbar^2}\right)^2=2\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}^{\scriptscriptstyle (1)}$.

11.19. Представим потенциал взаимодействия электрона с протоном в виде $U(r) = \lim_{\mu \to 0} -\frac{e^2}{r} \mathrm{e}^{-\mu r} \,.$ Используя формулу Борна (1.11.19), вычислим амплитуду

$$f(q,\mu) = \frac{m}{2\pi\hbar^2} \int d\phi \sin\theta \, d\theta r^2 dr \frac{e^2}{r} e^{-\mu r + iqr\cos\theta} = \frac{2me^2}{\hbar^2 q} \int_0^\infty dr \sin qr e^{-\mu r} =$$

$$= \frac{2me^2}{\hbar^2 q} \operatorname{Im} \int_0^\infty dr e^{-\mu r + iqr} = \frac{2me^2}{\hbar^2 (q^2 + \mu^2)}.$$

Подставляя $f(q) = f(q, \mu \to 0) = \frac{2me^2}{\hbar^2q^2}$ в формулу (1.11.20), получим дифференциальное сечение рассеяния, известное, как формула Резерфорда:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left| f(q) \right|^2 = \left(\frac{me^2}{\hbar^2 q^2} \right)^2 = \left(\frac{me^2}{2p^2} \right)^2 \frac{1}{\sin^4(\theta/2)}.$$

11.20. Согласно формуле Борна (1.11.19) амплитуда рассеяния пропорциональна фурье-образу потенциальной энергии взаимодействия электрона с атомом $U(r) = -e \varphi(r)$:

$$f(q) = -\frac{m}{2\pi\hbar^2} \int d^3 r e^{-i\vec{q} \cdot \vec{r}} (-e\varphi(r)) = \frac{me}{2\pi\hbar^2} \varphi_q,$$
 (2.11.2)

где ϕ_q — фурье-образ $\phi(r)$ электростатического потенциала внутри атома. Уравнением Пуассона $\Delta \phi = -4\pi \rho$ потенциал $\phi(r)$ связан с плотностью заряда внутри

атома $\rho(r) = e\left(\delta(\vec{r}) - n(r)\right)$, складывающейся из точечного заряда ядра и средней плотности заряда электронной оболочки, равной $-en(r) = -e \left| \psi(r) \right|^2$. Перейдя в уравнении Пуассона к фурье-представлению

$$\varphi(r) = \sum_{q} \varphi_q e^{i\vec{q}\cdot\vec{r}}, \quad \rho(r) = \sum_{q} \rho_q e^{i\vec{q}\cdot\vec{r}},$$

получим *алгебраическое* уравнение $-q^2 \phi_q = -4\pi \rho_q$, откуда сразу находим искомый фурье-образ $\phi_q = 4\pi \rho_q/q^2$, требуемый для подстановки в формулу (2.11.2):

$$f(q) = \frac{me}{2\pi\hbar^2} \varphi_q = \frac{2me^2}{\hbar^2 q^2} (1 - F(q)),$$

где $F(q) \equiv \int \! \mathrm{d}^3 r \, \mathrm{e}^{-\mathrm{i} \vec{q} \, \vec{r}} n(r) - \phi o p m \phi a \kappa m o p$, характеризующий распределение электронного заряда внутри атома. В основном состоянии атома водорода волновая функция электрона $\psi(\vec{r}) = \mathrm{e}^{-r/a_B} / \left(\pi a_B^3\right)$, и соответствующий формфактор равен

$$F(q) = \int d^3 r e^{-i\vec{q}\vec{r}} |\psi(r)|^2 = \int d^3 r e^{-i\vec{q}\vec{r}} \frac{1}{\pi a_B^3} e^{-2r/a_B} = \left(1 + a_B^2 q^2 / 4\right)^{-2}.$$

Дифференциальное сечение рассеяния электрона на атоме водорода

$$\frac{d\sigma}{d\Omega} = |f(q)|^2 = \left(\frac{me^2}{\hbar^2 q^2}\right)^2 |1 - F(q)|^2 = \left(\frac{me^2}{\hbar^2 q^2}\right)^2 \left(1 - \left(1 + a_B^2 q^2 / 4\right)^{-2}\right)^2.$$

Список литературы

- 1. Давыдов А.С. Квантовая механика: учебное пособие для университетов / А.С. Давыдов. 2-е изд., испр. и перераб. Москва.: Наука, 1973. 703с.
 - 2. Левич В.Г. Курс теоретической физики: [для физ.-техн. вузов и фак.]. В 2т.
- Т. 2: Квантовая механика. Квантовая статистика и физическая кинетика /
- В. Г. Левич, Ю.А. Вдовин, В.А. Мямлин. 2-е изд., перераб. Москва.: Наука, 1971. 936с.
- 3. *Вихман* Э. Берклеевский курс физики : в 5 т. Т. 4: Квантовая физика / Э. Х. Вихман Москва.: Наука, 1974. 388 с.
- 4. *Сивухин Д.В.* Общий курс физики : учебное пособие для вузов : в 5 т. Т.5 ч.1: Атомная физика / Д.В. Сивухин. Москва.: Наука, 1986. 426с.
- 5. *Иванов М.Г.* Размерность и подобие / М. Г. Иванов. Долгопрудный : Долгопрудн. авиац. техн., 2013.-68c.
- 6. Дубровский В.Г. Механика, термодинамика и статистическая физика : сборник задач и примеры их решения : учебное пособие / В. Г. Дубровский, Г. В. Харламов. Новосибирск : Изд-во НГТУ, 2010, 176с.
- 7. Ландау Л. Д. Курс теоретической физики : в 10т. Т. 3. Квантовая механика (нерелятивистская теория) / Л. Д. Ландау, Е. М. Лифшиц -6 изд. Москва : Физматлит, 2004. -800с.
- 8. *Ландау Л. Д.* Краткий курс теоретической физики: в 2т. Т. 2 : Квантовая механика / Л. Д. Ландау, Е. М. Лифшиц Москва : Наука, 1972. 368с.
- 9. Зелевинский В. Γ . Квантовая физика: Учебное пособие в 3т. Т. 1 : Основные понятия квантовой механики. Симметрии. / В. Γ . Зелевинский Новосибирск : РИЦ НГУ, 2014. 502с.
- 10. *Савельев И.В.* Основы теоретической физики: в 2 т. Т. 2 : Квантовая механика / И. В. Савельев 2-е изд., испр. Москва : Наука, 1996. 432с.
- 11. *Сербо В.Г.* Конспект лекций по квантовой механике: учебное пособие / В. Г. Сербо, И. Б. Хриплович. Новосибирск : Изд-во НГУ, 1999. 138с.
- 12. Дубровский В.Г. Введение в квантовую и статистическую физику: учебник НГТУ/ В.Г. Дубровский Новосибирск Изд-во НГТУ, 2005,—488с.
- 13. Зелевинский В. Г. Лекции по квантовой механике / В.Г. Зелевинский 2-е изд. Новосибирск : Сиб. унив. изд-во, 2002.-499c.
- 14. Дирак П.А.М. Принципы квантовой механики / П. Дирак; пер. с четвертого англ. изд. Ю. Н. Демкова, Г. Ф. Друкарева; под ред. и с предисл. В. А. Фока. 2 изд. Москва: Наука, 1979. 480 с. (Библиотека теоретической физики / ред. Д. В. Ширков).
- 15. Π андау Π . Π . Курс теоретической физики : в 10т. Т. 2. Теория поля / Π . Π . Π андау, Е. М. Π ифшиц 8-е изд. Москва : Физматлит, 2012. 536 с.